Measurement of the $^8$B Solar Neutrino Flux Using the Full SNO+ Water Phase

SNO+ Collaboration, :, A. Allega, M. R. Anderson, S. Andringa, M. Askins, D. J. Auty, A. Bacon, J. Baker, F. Barão, N. Barros, R. Bayes, E. W. Beier, A. Bialek, S. D. Biller, E. Blucher, E. Caden, E. J. Callaghan, M. Chen, S. Cheng, B. Cleveland, D. Cookman, J. Corning, M. A. Cox, R. Dehghani, J. Deloye, M. M. Depatie, F. Di Lodovico, C. Dima, J. Dittmer, K. H. Dixon, M. S. Esmaeilian, E. Falk, N. Fatemighomi, R. Ford, A. Gaur, O. I. González-Reina, D. Gooding, C. Grant, J. Grove, S. Hall, A. L. Hallin, D. Hallman, W. J. Heintzelman, R. L. Helmer, C. Hewitt, V. Howard, B. Hreljac, J. Hu, P. Huang, R. Hunt-Stokes, S. M. A. Hussain, A. S. Inácio, C. J. Jillings, S. Kaluzienski, T. Kaptanoglu, H. Khan, J. Kladnik, J. R. Klein, L. L. Kormos, B. Krar, C. Kraus, C. B. Krauss, T. Kroupová, C. Lake, L. Lebanowski, C. Lefebvre, V. Lozza, M. Luo, A. Maio, S. Manecki, J. Maneira, R. D. Martin, N. McCauley, A. B. McDonald, G. Milton, A. Molina Colina, D. Morris, M. Mubasher, S. Naugle, L. J. Nolan, H. M. O'Keeffe, G. D. Orebi Gann, J. Page, K. Paleshi, W. Parker, J. Paton, S. J. M. Peeters, L. Pickard, B. Quenallata, P. Ravi, A. Reichold, S. Riccetto, J. Rose, R. Rosero, I. Semenec, J. Simms, P. Skensved, M. Smiley, J. Smith, R. Svoboda, B. Tam, J. Tseng, E. Vázquez-Jáuregui, J. G. C. Veinot, C. J. Virtue, M. Ward, J. J. Weigand, J. R. Wilson, J. D. Wilson, A. Wright, S. Yang, M. Yeh, Z. Ye, S. Yu, Y. Zhang, K. Zuber, A. Zummo
{"title":"Measurement of the $^8$B Solar Neutrino Flux Using the Full SNO+ Water Phase","authors":"SNO+ Collaboration, :, A. Allega, M. R. Anderson, S. Andringa, M. Askins, D. J. Auty, A. Bacon, J. Baker, F. Barão, N. Barros, R. Bayes, E. W. Beier, A. Bialek, S. D. Biller, E. Blucher, E. Caden, E. J. Callaghan, M. Chen, S. Cheng, B. Cleveland, D. Cookman, J. Corning, M. A. Cox, R. Dehghani, J. Deloye, M. M. Depatie, F. Di Lodovico, C. Dima, J. Dittmer, K. H. Dixon, M. S. Esmaeilian, E. Falk, N. Fatemighomi, R. Ford, A. Gaur, O. I. González-Reina, D. Gooding, C. Grant, J. Grove, S. Hall, A. L. Hallin, D. Hallman, W. J. Heintzelman, R. L. Helmer, C. Hewitt, V. Howard, B. Hreljac, J. Hu, P. Huang, R. Hunt-Stokes, S. M. A. Hussain, A. S. Inácio, C. J. Jillings, S. Kaluzienski, T. Kaptanoglu, H. Khan, J. Kladnik, J. R. Klein, L. L. Kormos, B. Krar, C. Kraus, C. B. Krauss, T. Kroupová, C. Lake, L. Lebanowski, C. Lefebvre, V. Lozza, M. Luo, A. Maio, S. Manecki, J. Maneira, R. D. Martin, N. McCauley, A. B. McDonald, G. Milton, A. Molina Colina, D. Morris, M. Mubasher, S. Naugle, L. J. Nolan, H. M. O'Keeffe, G. D. Orebi Gann, J. Page, K. Paleshi, W. Parker, J. Paton, S. J. M. Peeters, L. Pickard, B. Quenallata, P. Ravi, A. Reichold, S. Riccetto, J. Rose, R. Rosero, I. Semenec, J. Simms, P. Skensved, M. Smiley, J. Smith, R. Svoboda, B. Tam, J. Tseng, E. Vázquez-Jáuregui, J. G. C. Veinot, C. J. Virtue, M. Ward, J. J. Weigand, J. R. Wilson, J. D. Wilson, A. Wright, S. Yang, M. Yeh, Z. Ye, S. Yu, Y. Zhang, K. Zuber, A. Zummo","doi":"arxiv-2407.17595","DOIUrl":null,"url":null,"abstract":"The SNO+ detector operated initially as a water Cherenkov detector. The\nimplementation of a sealed covergas system midway through water data taking\nresulted in a significant reduction in the activity of $^{222}$Rn daughters in\nthe detector and allowed the lowest background to the solar electron scattering\nsignal above 5 MeV achieved to date. This paper reports an updated SNO+ water\nphase $^8$B solar neutrino analysis with a total livetime of 282.4 days and an\nanalysis threshold of 3.5 MeV. The $^8$B solar neutrino flux is found to be\n$\\left(2.32^{+0.18}_{-0.17}\\text{(stat.)}^{+0.07}_{-0.05}\\text{(syst.)}\\right)\\times10^{6}$\ncm$^{-2}$s$^{-1}$ assuming no neutrino oscillations, or\n$\\left(5.36^{+0.41}_{-0.39}\\text{(stat.)}^{+0.17}_{-0.16}\\text{(syst.)}\n\\right)\\times10^{6}$ cm$^{-2}$s$^{-1}$ assuming standard neutrino oscillation\nparameters, in good agreement with both previous measurements and Standard\nSolar Model Calculations. The electron recoil spectrum is presented above 3.5\nMeV.","PeriodicalId":501181,"journal":{"name":"arXiv - PHYS - High Energy Physics - Experiment","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - High Energy Physics - Experiment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.17595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The SNO+ detector operated initially as a water Cherenkov detector. The implementation of a sealed covergas system midway through water data taking resulted in a significant reduction in the activity of $^{222}$Rn daughters in the detector and allowed the lowest background to the solar electron scattering signal above 5 MeV achieved to date. This paper reports an updated SNO+ water phase $^8$B solar neutrino analysis with a total livetime of 282.4 days and an analysis threshold of 3.5 MeV. The $^8$B solar neutrino flux is found to be $\left(2.32^{+0.18}_{-0.17}\text{(stat.)}^{+0.07}_{-0.05}\text{(syst.)}\right)\times10^{6}$ cm$^{-2}$s$^{-1}$ assuming no neutrino oscillations, or $\left(5.36^{+0.41}_{-0.39}\text{(stat.)}^{+0.17}_{-0.16}\text{(syst.)} \right)\times10^{6}$ cm$^{-2}$s$^{-1}$ assuming standard neutrino oscillation parameters, in good agreement with both previous measurements and Standard Solar Model Calculations. The electron recoil spectrum is presented above 3.5 MeV.
利用全 SNO+ 水相测量 $^8$B 太阳中微子通量
SNO+ 探测器最初是作为水切伦科夫探测器运行的。在采集水数据的中途采用了密封盖气系统,从而显著降低了探测器中^{222}$Rn子的活性,并使5兆电子伏特以上的太阳电子散射信号的背景达到了迄今为止的最低水平。本文报告了最新的SNO+水相^8$B太阳中微子分析结果,其总有效时间为282.4天,分析阈值为3.5MeV。假定没有中微子振荡,$^8$B太阳中微子通量为$left(2.32^{+0.18}_{-0.17}\text{(stat.)}^{+0.07}_{-0.05}\text{(syst.)}right)/times10^{6}$cm$^{-2}$s$^{-1}$,或者$left(5.36^{+0.41}_{-0.39}text{(stat.)}^{+0.17}_{-0.16}text{(syst.)}right)(times10^{6}$ cm$^{-2}$s$^{-1}$假设标准中微子振荡参数,与之前的测量结果和标准太阳模型计算结果都很一致。在 3.5MeV 以上呈现了电子反冲谱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信