High order approximations of the log-Heston process semigroup

Aurélien Alfonsi, Edoardo Lombardo
{"title":"High order approximations of the log-Heston process semigroup","authors":"Aurélien Alfonsi, Edoardo Lombardo","doi":"arxiv-2407.17151","DOIUrl":null,"url":null,"abstract":"We present weak approximations schemes of any order for the Heston model that\nare obtained by using the method developed by Alfonsi and Bally (2021). This\nmethod consists in combining approximation schemes calculated on different\nrandom grids to increase the order of convergence. We apply this method with\neither the Ninomiya-Victoir scheme (2008) or a second-order scheme that samples\nexactly the volatility component, and we show rigorously that we can achieve\nthen any order of convergence. We give numerical illustrations on financial\nexamples that validate the theoretical order of convergence, and present also\npromising numerical results for the multifactor/rough Heston model.","PeriodicalId":501294,"journal":{"name":"arXiv - QuantFin - Computational Finance","volume":"80 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Computational Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.17151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present weak approximations schemes of any order for the Heston model that are obtained by using the method developed by Alfonsi and Bally (2021). This method consists in combining approximation schemes calculated on different random grids to increase the order of convergence. We apply this method with either the Ninomiya-Victoir scheme (2008) or a second-order scheme that samples exactly the volatility component, and we show rigorously that we can achieve then any order of convergence. We give numerical illustrations on financial examples that validate the theoretical order of convergence, and present also promising numerical results for the multifactor/rough Heston model.
对数-赫斯顿过程半群的高阶近似值
我们介绍了通过使用 Alfonsi 和 Bally(2021 年)开发的方法获得的 Heston 模型的任意阶弱近似方案。这种方法是将在不同随机网格上计算的近似方案结合起来,以提高收敛阶数。我们将此方法与 Ninomiya-Victoir 方案(2008 年)或精确采样波动成分的二阶方案结合使用,并严格证明我们可以达到任何收敛阶次。我们给出了金融实例的数值说明,验证了理论上的收敛阶次,并给出了多因素/透彻海斯顿模型的令人振奋的数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信