Cones of orthogonal Shimura subvarieties and equidistribution

Pub Date : 2024-07-27 DOI:10.1007/s00229-024-01586-8
Riccardo Zuffetti
{"title":"Cones of orthogonal Shimura subvarieties and equidistribution","authors":"Riccardo Zuffetti","doi":"10.1007/s00229-024-01586-8","DOIUrl":null,"url":null,"abstract":"<p>Let <i>X</i> be an orthogonal Shimura variety, and let <span>\\(\\mathcal {C}^{\\textrm{ort}}_{r}(X)\\)</span> be the cone generated by the cohomology classes of orthogonal Shimura subvarieties in <i>X</i> of dimension <i>r</i>. We investigate the asymptotic properties of the generating rays of <span>\\(\\mathcal {C}^{\\textrm{ort}}_{r}(X)\\)</span> for large values of <i>r</i>. They accumulate towards rays generated by wedge products of the Kähler class of <i>X</i> and the fundamental class of an orthogonal Shimura subvariety. We also compare <span>\\(\\mathcal {C}^{\\textrm{ort}}_{r}(X)\\)</span> with the cone generated by the special cycles of dimension <i>r</i>. The main ingredient to achieve the results above is the equidistribution of orthogonal Shimura subvarieties.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00229-024-01586-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let X be an orthogonal Shimura variety, and let \(\mathcal {C}^{\textrm{ort}}_{r}(X)\) be the cone generated by the cohomology classes of orthogonal Shimura subvarieties in X of dimension r. We investigate the asymptotic properties of the generating rays of \(\mathcal {C}^{\textrm{ort}}_{r}(X)\) for large values of r. They accumulate towards rays generated by wedge products of the Kähler class of X and the fundamental class of an orthogonal Shimura subvariety. We also compare \(\mathcal {C}^{\textrm{ort}}_{r}(X)\) with the cone generated by the special cycles of dimension r. The main ingredient to achieve the results above is the equidistribution of orthogonal Shimura subvarieties.

Abstract Image

分享
查看原文
正交志村子变量的圆锥和等分布
让 X 是一个正交志村变,让 \(\mathcal {C}^{\textrm{ort}}_{r}}(X)\) 是维数为 r 的 X 中正交志村子变的同调类所生成的锥。我们研究了 r 大值时\(\mathcal {C}^{textrm{ort}}_{r}(X)\) 的生成射线的渐近性质,它们向由 X 的 Kähler 类和正交 Shimura 子变量的基类的楔积生成的射线累积。我们还将\(\mathcal {C}^{\textrm{ort}}_{r}(X)\) 与维数为 r 的特殊循环生成的圆锥进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信