Estimating Distributional Treatment Effects in Randomized Experiments: Machine Learning for Variance Reduction

Undral Byambadalai, Tatsushi Oka, Shota Yasui
{"title":"Estimating Distributional Treatment Effects in Randomized Experiments: Machine Learning for Variance Reduction","authors":"Undral Byambadalai, Tatsushi Oka, Shota Yasui","doi":"arxiv-2407.16037","DOIUrl":null,"url":null,"abstract":"We propose a novel regression adjustment method designed for estimating\ndistributional treatment effect parameters in randomized experiments.\nRandomized experiments have been extensively used to estimate treatment effects\nin various scientific fields. However, to gain deeper insights, it is essential\nto estimate distributional treatment effects rather than relying solely on\naverage effects. Our approach incorporates pre-treatment covariates into a\ndistributional regression framework, utilizing machine learning techniques to\nimprove the precision of distributional treatment effect estimators. The\nproposed approach can be readily implemented with off-the-shelf machine\nlearning methods and remains valid as long as the nuisance components are\nreasonably well estimated. Also, we establish the asymptotic properties of the\nproposed estimator and present a uniformly valid inference method. Through\nsimulation results and real data analysis, we demonstrate the effectiveness of\nintegrating machine learning techniques in reducing the variance of\ndistributional treatment effect estimators in finite samples.","PeriodicalId":501293,"journal":{"name":"arXiv - ECON - Econometrics","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - ECON - Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.16037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a novel regression adjustment method designed for estimating distributional treatment effect parameters in randomized experiments. Randomized experiments have been extensively used to estimate treatment effects in various scientific fields. However, to gain deeper insights, it is essential to estimate distributional treatment effects rather than relying solely on average effects. Our approach incorporates pre-treatment covariates into a distributional regression framework, utilizing machine learning techniques to improve the precision of distributional treatment effect estimators. The proposed approach can be readily implemented with off-the-shelf machine learning methods and remains valid as long as the nuisance components are reasonably well estimated. Also, we establish the asymptotic properties of the proposed estimator and present a uniformly valid inference method. Through simulation results and real data analysis, we demonstrate the effectiveness of integrating machine learning techniques in reducing the variance of distributional treatment effect estimators in finite samples.
估算随机实验中的分布式治疗效果:减少方差的机器学习
我们提出了一种新的回归调整方法,旨在估计随机实验中的分布式治疗效果参数。随机实验已被广泛应用于各个科学领域的治疗效果估算中。然而,要想获得更深入的见解,就必须估算分布性治疗效果,而不能仅仅依赖于平均效果。我们的方法将治疗前协变量纳入分布回归框架,利用机器学习技术来提高分布治疗效果估计的精确度。我们提出的方法可以通过现成的机器学习方法轻松实现,而且只要能合理地估计出干扰成分,该方法就仍然有效。此外,我们还建立了所提估计器的渐近特性,并提出了一种统一有效的推断方法。通过模拟结果和实际数据分析,我们证明了整合机器学习技术在有限样本中降低分布式治疗效果估计器方差的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信