Unital k-Restricted Infinity-Operads

Amartya Shekhar Dubey, Yu Leon Liu
{"title":"Unital k-Restricted Infinity-Operads","authors":"Amartya Shekhar Dubey, Yu Leon Liu","doi":"arxiv-2407.17444","DOIUrl":null,"url":null,"abstract":"We study unital $\\infty$-operads by their arity restrictions. Given $k \\geq\n1$, we develop a model for unital $k$-restricted $\\infty$-operads, which are\nvariants of $\\infty$-operads which has only $(\\leq k)$-arity morphisms, as\ncomplete Segal presheaves on closed $k$-dendroidal trees, which are closed\ntrees build from corollas with valences $\\leq k$. Furthermore, we prove that\nthe restriction functors from unital $\\infty$-operads to unital $k$-restricted\n$\\infty$-operads admit fully faithful left and right adjoints by showing that\nthe left and right Kan extensions preserve complete Segal objects. Varying $k$,\nthe left and right adjoints give a filtration and a co-filtration for any\nunital $\\infty$-operads by $k$-restricted $\\infty$-operads.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.17444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study unital $\infty$-operads by their arity restrictions. Given $k \geq 1$, we develop a model for unital $k$-restricted $\infty$-operads, which are variants of $\infty$-operads which has only $(\leq k)$-arity morphisms, as complete Segal presheaves on closed $k$-dendroidal trees, which are closed trees build from corollas with valences $\leq k$. Furthermore, we prove that the restriction functors from unital $\infty$-operads to unital $k$-restricted $\infty$-operads admit fully faithful left and right adjoints by showing that the left and right Kan extensions preserve complete Segal objects. Varying $k$, the left and right adjoints give a filtration and a co-filtration for any unital $\infty$-operads by $k$-restricted $\infty$-operads.
单元 k 限制无穷周波
我们通过其算术限制来研究单元$\infty$-operads。给定 $k \geq1$,我们建立了一个单整$k$受限$infty$-operads的模型,它是只有$(\leq k)$极性态的$infty$-operads的变体,是封闭的$k$树枝状树上的完整的Segal预分支,而封闭的树枝状树是由具有$\leq k$价的冠词建立的。此外,我们通过证明左和右坎扩展保留了完整的西格尔对象,证明了从独元$\infty$-operads到独元$k$-restricted$\infty$-operads的限制函数允许完全忠实的左和右邻接。随着 $k$ 的变化,左邻接和右邻接给出了由 $k$ 限制$infty$-operads 对任何单元$infty$-operads 的过滤和共滤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信