Differential torsion theories on Eilenberg-Moore categories of monads

Divya Ahuja, Surjeet Kour
{"title":"Differential torsion theories on Eilenberg-Moore categories of monads","authors":"Divya Ahuja, Surjeet Kour","doi":"arxiv-2407.16782","DOIUrl":null,"url":null,"abstract":"Let $\\mathcal C$ be a Grothendieck category and $U$ be a monad on $\\mathcal\nC$ that is exact and preserves colimits. In this article, we prove that every\nhereditary torsion theory on the Eilenberg-Moore category $EM_U$ of modules\nover a monad $U$ is differential. Further, if $\\delta:U\\longrightarrow U$\ndenotes a derivation on a monad $U$, then we show that every\n$\\delta$-derivation on a $U$-module $M$ extends uniquely to a\n$\\delta$-derivation on the module of quotients of $M$.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.16782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $\mathcal C$ be a Grothendieck category and $U$ be a monad on $\mathcal C$ that is exact and preserves colimits. In this article, we prove that every hereditary torsion theory on the Eilenberg-Moore category $EM_U$ of modules over a monad $U$ is differential. Further, if $\delta:U\longrightarrow U$ denotes a derivation on a monad $U$, then we show that every $\delta$-derivation on a $U$-module $M$ extends uniquely to a $\delta$-derivation on the module of quotients of $M$.
艾伦伯格-摩尔单子范畴上的微分扭转理论
让 $mathcal C$ 是一个格罗内迪克范畴,$U$ 是在 $mathcalC$ 上的一个单元,它是精确的,并且保留顶点。在本文中,我们将证明在单元 $U$ 上的模块的艾伦伯格-摩尔类别 $EM_U$ 上的每一个遗传扭转理论都是微分的。此外,如果 $\delta:U\longrightarrow U$ 表示单元 $U$ 上的派生,那么我们证明 $U$ 模块 $M$ 上的每个 $\delta$ 派生都唯一地扩展到 $M$ 的商模块上的 $\delta$ 派生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信