Skolem, Gödel, and Hilbert fibrations

Davide Trotta, Jonathan Weinberger, Valeria de Paiva
{"title":"Skolem, Gödel, and Hilbert fibrations","authors":"Davide Trotta, Jonathan Weinberger, Valeria de Paiva","doi":"arxiv-2407.15765","DOIUrl":null,"url":null,"abstract":"Grothendieck fibrations are fundamental in capturing the concept of\ndependency, notably in categorical semantics of type theory and programming\nlanguages. A relevant instance are Dialectica fibrations which generalise\nG\\\"odel's Dialectica proof interpretation and have been widely studied in\nrecent years. We characterise when a given fibration is a generalised, dependent Dialectica\nfibration, namely an iterated completion of a fibration by dependent products\nand sums (along a given class of display maps). From a technical perspective,\nwe complement the work of Hofstra on Dialectica fibrations by an internal\nviewpoint, categorifying the classical notion of quantifier-freeness. We also\ngeneralise both Hofstra's and Trotta et al.'s work on G\\\"odel fibrations to the\ndependent case, replacing the class of cartesian projections in the base\ncategory by arbitrary display maps. We discuss how this recovers a range of\nrelevant examples in categorical logic and proof theory. Moreover, as another\ninstance, we introduce Hilbert fibrations, providing a categorical\nunderstanding of Hilbert's $\\epsilon$- and $\\tau$-operators well-known from\nproof theory.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.15765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Grothendieck fibrations are fundamental in capturing the concept of dependency, notably in categorical semantics of type theory and programming languages. A relevant instance are Dialectica fibrations which generalise G\"odel's Dialectica proof interpretation and have been widely studied in recent years. We characterise when a given fibration is a generalised, dependent Dialectica fibration, namely an iterated completion of a fibration by dependent products and sums (along a given class of display maps). From a technical perspective, we complement the work of Hofstra on Dialectica fibrations by an internal viewpoint, categorifying the classical notion of quantifier-freeness. We also generalise both Hofstra's and Trotta et al.'s work on G\"odel fibrations to the dependent case, replacing the class of cartesian projections in the base category by arbitrary display maps. We discuss how this recovers a range of relevant examples in categorical logic and proof theory. Moreover, as another instance, we introduce Hilbert fibrations, providing a categorical understanding of Hilbert's $\epsilon$- and $\tau$-operators well-known from proof theory.
斯科勒姆、哥德尔和希尔伯特纤维
格罗登第克纤维是捕捉依赖性概念的基础,特别是在类型理论的分类语义学和程序语言中。一个相关的例子是辩证法纤度,它概括了格(odel)的辩证法证明解释,近年来被广泛研究。我们描述了什么情况下给定的纤度是广义的、从属的辩证法纤度,即通过从属积和(沿着给定的显示映射类别)迭代完成的纤度。从技术角度看,我们从内部视角对霍夫斯特拉关于辩证法纤度的工作进行了补充,对经典的无量词概念进行了分类。我们还把霍夫斯特拉和特罗塔等人关于G(odel)纤元的工作推广到了依赖情况,用任意显示映射取代了基类中的类直角坐标投影。我们讨论了这是如何恢复分类逻辑和证明理论中一系列相关例子的。此外,作为另一个例子,我们引入了希尔伯特纤度,提供了对证明理论中著名的希尔伯特$epsilon$-和$\tau$-运算符的分类理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信