Fusing LLMs and KGs for Formal Causal Reasoning behind Financial Risk Contagion

Guanyuan Yu, Xv Wang, Qing Li, Yu Zhao
{"title":"Fusing LLMs and KGs for Formal Causal Reasoning behind Financial Risk Contagion","authors":"Guanyuan Yu, Xv Wang, Qing Li, Yu Zhao","doi":"arxiv-2407.17190","DOIUrl":null,"url":null,"abstract":"Financial risks trend to spread from one entity to another, ultimately\nleading to systemic risks. The key to preventing such risks lies in\nunderstanding the causal chains behind risk contagion. Despite this, prevailing\napproaches primarily emphasize identifying risks, overlooking the underlying\ncausal analysis of risk. To address such an issue, we propose a Risk Contagion\nCausal Reasoning model called RC2R, which uses the logical reasoning\ncapabilities of large language models (LLMs) to dissect the causal mechanisms\nof risk contagion grounded in the factual and expert knowledge embedded within\nfinancial knowledge graphs (KGs). At the data level, we utilize financial KGs\nto construct causal instructions, empowering LLMs to perform formal causal\nreasoning on risk propagation and tackle the \"causal parrot\" problem of LLMs.\nIn terms of model architecture, we integrate a fusion module that aligns tokens\nand nodes across various granularities via multi-scale contrastive learning,\nfollowed by the amalgamation of textual and graph-structured data through soft\nprompt with cross multi-head attention mechanisms. To quantify risk contagion,\nwe introduce a risk pathway inference module for calculating risk scores for\neach node in the graph. Finally, we visualize the risk contagion pathways and\ntheir intensities using Sankey diagrams, providing detailed causal\nexplanations. Comprehensive experiments on financial KGs and supply chain\ndatasets demonstrate that our model outperforms several state-of-the-art models\nin prediction performance and out-of-distribution (OOD) generalization\ncapabilities. We will make our dataset and code publicly accessible to\nencourage further research and development in this field.","PeriodicalId":501309,"journal":{"name":"arXiv - CS - Computational Engineering, Finance, and Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Engineering, Finance, and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.17190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Financial risks trend to spread from one entity to another, ultimately leading to systemic risks. The key to preventing such risks lies in understanding the causal chains behind risk contagion. Despite this, prevailing approaches primarily emphasize identifying risks, overlooking the underlying causal analysis of risk. To address such an issue, we propose a Risk Contagion Causal Reasoning model called RC2R, which uses the logical reasoning capabilities of large language models (LLMs) to dissect the causal mechanisms of risk contagion grounded in the factual and expert knowledge embedded within financial knowledge graphs (KGs). At the data level, we utilize financial KGs to construct causal instructions, empowering LLMs to perform formal causal reasoning on risk propagation and tackle the "causal parrot" problem of LLMs. In terms of model architecture, we integrate a fusion module that aligns tokens and nodes across various granularities via multi-scale contrastive learning, followed by the amalgamation of textual and graph-structured data through soft prompt with cross multi-head attention mechanisms. To quantify risk contagion, we introduce a risk pathway inference module for calculating risk scores for each node in the graph. Finally, we visualize the risk contagion pathways and their intensities using Sankey diagrams, providing detailed causal explanations. Comprehensive experiments on financial KGs and supply chain datasets demonstrate that our model outperforms several state-of-the-art models in prediction performance and out-of-distribution (OOD) generalization capabilities. We will make our dataset and code publicly accessible to encourage further research and development in this field.
融合 LLMs 和 KGs 进行金融风险蔓延背后的形式因果推理
金融风险有从一个实体蔓延到另一个实体的趋势,最终导致系统性风险。防范此类风险的关键在于了解风险蔓延背后的因果链。尽管如此,目前流行的方法主要强调识别风险,而忽视了风险背后的因果分析。为了解决这个问题,我们提出了一个名为 RC2R 的风险传染因果推理模型,该模型利用大型语言模型(LLM)的逻辑推理能力来剖析蕴含在金融知识图谱(KG)中的事实知识和专家知识的风险传染因果机制。在数据层面,我们利用金融知识图谱来构建因果指令,从而使 LLMs 能够对风险传播进行正式的因果推理,并解决 LLMs 的 "因果鹦鹉 "问题。在模型架构方面,我们集成了一个融合模块,该模块通过多尺度对比学习来调整不同粒度的标记和节点,然后通过软提示和交叉多头关注机制来合并文本和图结构化数据。为了量化风险传染,我们引入了一个风险路径推断模块,用于计算图中每个节点的风险分数。最后,我们利用桑基图(Sankey diagrams)将风险传染路径及其强度可视化,并提供详细的因果关系解释。在金融 KG 和供应链数据集上进行的综合实验表明,我们的模型在预测性能和分布外泛化能力方面优于多个最先进的模型。我们将公开我们的数据集和代码,以鼓励在这一领域的进一步研究和开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信