M-Convexity of Vexillary Grothendieck Polynomials via Bubbling

IF 0.9 3区 数学 Q2 MATHEMATICS
Elena S. Hafner, Karola Mészáros, Linus Setiabrata, Avery St. Dizier
{"title":"M-Convexity of Vexillary Grothendieck Polynomials via Bubbling","authors":"Elena S. Hafner, Karola Mészáros, Linus Setiabrata, Avery St. Dizier","doi":"10.1137/23m1599082","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Discrete Mathematics, Volume 38, Issue 3, Page 2194-2225, September 2024. <br/> Abstract. We introduce bubbling diagrams and show that they compute the support of the Grothendieck polynomial of any vexillary permutation. Using these diagrams, we show that the support of the top homogeneous component of such a Grothendieck polynomial coincides with the support of the dual character of an explicit flagged Weyl module. We also show that the homogenized Grothendieck polynomial of a vexillary permutation has M-convex support.","PeriodicalId":49530,"journal":{"name":"SIAM Journal on Discrete Mathematics","volume":"34 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1599082","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Discrete Mathematics, Volume 38, Issue 3, Page 2194-2225, September 2024.
Abstract. We introduce bubbling diagrams and show that they compute the support of the Grothendieck polynomial of any vexillary permutation. Using these diagrams, we show that the support of the top homogeneous component of such a Grothendieck polynomial coincides with the support of the dual character of an explicit flagged Weyl module. We also show that the homogenized Grothendieck polynomial of a vexillary permutation has M-convex support.
通过气泡实现格罗内迪克多项式的 M-凸性
SIAM 离散数学杂志》,第 38 卷第 3 期,第 2194-2225 页,2024 年 9 月。 摘要我们引入了冒泡图,并证明冒泡图可以计算任意矢量置换的格罗顿第克多项式的支持。利用这些图,我们证明了这样一个格罗内狄克多项式的顶同质分量的支持与一个明确标记的韦尔模块的对偶特征的支持重合。我们还证明了矢量置换的同源格罗内狄克多项式具有 M-凸支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Discrete Mathematics (SIDMA) publishes research papers of exceptional quality in pure and applied discrete mathematics, broadly interpreted. The journal''s focus is primarily theoretical rather than empirical, but the editors welcome papers that evolve from or have potential application to real-world problems. Submissions must be clearly written and make a significant contribution. Topics include but are not limited to: properties of and extremal problems for discrete structures combinatorial optimization, including approximation algorithms algebraic and enumerative combinatorics coding and information theory additive, analytic combinatorics and number theory combinatorial matrix theory and spectral graph theory design and analysis of algorithms for discrete structures discrete problems in computational complexity discrete and computational geometry discrete methods in computational biology, and bioinformatics probabilistic methods and randomized algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信