The MEMENTO code for modeling of macroscopic melt motion in fusion devices

IF 1.9 3区 工程技术 Q1 NUCLEAR SCIENCE & TECHNOLOGY
K. Paschalidis , F. Lucco Castello , S. Ratynskaia , P. Tolias , L. Brandt
{"title":"The MEMENTO code for modeling of macroscopic melt motion in fusion devices","authors":"K. Paschalidis ,&nbsp;F. Lucco Castello ,&nbsp;S. Ratynskaia ,&nbsp;P. Tolias ,&nbsp;L. Brandt","doi":"10.1016/j.fusengdes.2024.114603","DOIUrl":null,"url":null,"abstract":"<div><p>The <strong>MEMENTO</strong> (<strong>ME</strong>tallic <strong>M</strong>elt <strong>E</strong>volution in <strong>N</strong>ext-step <strong>TO</strong>kamaks) code is a new numerical implementation of the physics model originally developed for the MEMOS-U code with the objective to self-consistently describe the generation of melt and its subsequent large scale dynamics in fusion devices and to assess the damage of metallic reactor armor under powerful normal and off-normal plasma events. The model has been validated in multiple dedicated EUROfusion experiments. MEMENTO solves the heat and phase transfer problem coupled with the incompressible Navier–Stokes equations in the shallow water approximation for the thin liquid film over the solid metal and with the current propagation equations on a domain that features a time-evolving deforming metal-plasma interface. The code utilizes non-uniform and adaptive meshing along with sub-cycling in time facilitated by the AMReX open-source framework as well as AMReX’s built-in parallelization capabilities.</p></div>","PeriodicalId":55133,"journal":{"name":"Fusion Engineering and Design","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S092037962400454X/pdfft?md5=e0953f8a1d6869ba8ed6ab349bef3411&pid=1-s2.0-S092037962400454X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fusion Engineering and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092037962400454X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The MEMENTO (MEtallic Melt Evolution in Next-step TOkamaks) code is a new numerical implementation of the physics model originally developed for the MEMOS-U code with the objective to self-consistently describe the generation of melt and its subsequent large scale dynamics in fusion devices and to assess the damage of metallic reactor armor under powerful normal and off-normal plasma events. The model has been validated in multiple dedicated EUROfusion experiments. MEMENTO solves the heat and phase transfer problem coupled with the incompressible Navier–Stokes equations in the shallow water approximation for the thin liquid film over the solid metal and with the current propagation equations on a domain that features a time-evolving deforming metal-plasma interface. The code utilizes non-uniform and adaptive meshing along with sub-cycling in time facilitated by the AMReX open-source framework as well as AMReX’s built-in parallelization capabilities.

用于聚变装置中宏观熔体运动建模的 MEMENTO 代码
(tallic elt volution in ext-step kamaks)代码是最初为 MEMOS-U 代码开发的物理模型的新数值实现,目的是自洽地描述聚变装置中熔体的产生及其随后的大尺度动力学,并评估金属反应堆铠装在强大的正常和非正常等离子体事件下的损坏情况。该模型已在多个专门的欧洲聚变实验中得到验证。MEMENTO 解决了热量和相位传递问题,以及固体金属上的薄液膜在浅水近似条件下的不可压缩纳维-斯托克斯(Navier-Stokes)方程,并解决了金属-等离子体界面随时间变化的域上的电流传播方程。该代码利用 AMReX 开源框架和 AMReX 内置的并行化功能,在时间上利用非均匀和自适应网格划分以及子循环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fusion Engineering and Design
Fusion Engineering and Design 工程技术-核科学技术
CiteScore
3.50
自引率
23.50%
发文量
275
审稿时长
3.8 months
期刊介绍: The journal accepts papers about experiments (both plasma and technology), theory, models, methods, and designs in areas relating to technology, engineering, and applied science aspects of magnetic and inertial fusion energy. Specific areas of interest include: MFE and IFE design studies for experiments and reactors; fusion nuclear technologies and materials, including blankets and shields; analysis of reactor plasmas; plasma heating, fuelling, and vacuum systems; drivers, targets, and special technologies for IFE, controls and diagnostics; fuel cycle analysis and tritium reprocessing and handling; operations and remote maintenance of reactors; safety, decommissioning, and waste management; economic and environmental analysis of components and systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信