Hamed F Ganji, Viktor Kornilov, Jeroen van Oijen, Ines Lopez Arteaga, Philip de Goey
{"title":"Discussing the limitations of unconditional stability indicators in evaluating thermoacoustic quality of burners with flames","authors":"Hamed F Ganji, Viktor Kornilov, Jeroen van Oijen, Ines Lopez Arteaga, Philip de Goey","doi":"10.1177/17568277241265433","DOIUrl":null,"url":null,"abstract":"Assessing the thermoacoustic performance of designed combustors, with a focus on the stability quality factor, is crucial. Thermoacoustic instability in combustion appliances arises from intricate interactions among unsteady combustion, heat transfer, and (maybe) acoustic modes within the system. Accurate prediction of system stability requires modeling all components, including the burner with flame. Traditionally, the burner in the presence of combustion is represented as an acoustically (active) two-port block with passive upstream and downstream acoustic terminations. The dispersion relation of the thermoacoustic system is commonly used for anticipating eigen-frequencies and assessing stability. However, practical scenarios often lack specific information about upstream and downstream terminations during development. This raises a critical question: How can the thermoacoustic performance of burners and their associated flames be evaluated without specified acoustics? This article addresses this question by exploring the concept of unconditional stability in a generic two-port thermoacoustic system. The unconditional stability criteria have been used as quality indicators in designing electrical devices. This rich toolbox has been introduced in thermoacoustics. We first scrutinize assumptions underlying two most known unconditional stability-based criteria called [Formula: see text] and [Formula: see text] factors, connecting them to the general thermoacoustic problems. Then, the application of these criteria in assessing the thermoacoustic quality of burners with flames are discussed. This investigation revealed that while they are able to accurately predict the histogram of unstable frequencies and critical frequency bands, their use as reliable indicators to assess thermoacoustic quality in burners are not recommended due to their mathematical limitations and high level of conservatism of these factors.","PeriodicalId":49046,"journal":{"name":"International Journal of Spray and Combustion Dynamics","volume":"26 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Spray and Combustion Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/17568277241265433","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Assessing the thermoacoustic performance of designed combustors, with a focus on the stability quality factor, is crucial. Thermoacoustic instability in combustion appliances arises from intricate interactions among unsteady combustion, heat transfer, and (maybe) acoustic modes within the system. Accurate prediction of system stability requires modeling all components, including the burner with flame. Traditionally, the burner in the presence of combustion is represented as an acoustically (active) two-port block with passive upstream and downstream acoustic terminations. The dispersion relation of the thermoacoustic system is commonly used for anticipating eigen-frequencies and assessing stability. However, practical scenarios often lack specific information about upstream and downstream terminations during development. This raises a critical question: How can the thermoacoustic performance of burners and their associated flames be evaluated without specified acoustics? This article addresses this question by exploring the concept of unconditional stability in a generic two-port thermoacoustic system. The unconditional stability criteria have been used as quality indicators in designing electrical devices. This rich toolbox has been introduced in thermoacoustics. We first scrutinize assumptions underlying two most known unconditional stability-based criteria called [Formula: see text] and [Formula: see text] factors, connecting them to the general thermoacoustic problems. Then, the application of these criteria in assessing the thermoacoustic quality of burners with flames are discussed. This investigation revealed that while they are able to accurately predict the histogram of unstable frequencies and critical frequency bands, their use as reliable indicators to assess thermoacoustic quality in burners are not recommended due to their mathematical limitations and high level of conservatism of these factors.
期刊介绍:
International Journal of Spray and Combustion Dynamics is a peer-reviewed open access journal on fundamental and applied research in combustion and spray dynamics. Fundamental topics include advances in understanding unsteady combustion, combustion instability and noise, flame-acoustic interaction and its active and passive control, duct acoustics...