Ki-Baek Roh , Myeong-Geon Lee , Heung Nam Han , Hyoung Chan Kim , Gon-Ho Kim
{"title":"Sputtering yield increase with fluence in low-energy argon plasma-tungsten interaction","authors":"Ki-Baek Roh , Myeong-Geon Lee , Heung Nam Han , Hyoung Chan Kim , Gon-Ho Kim","doi":"10.1016/j.fusengdes.2024.114607","DOIUrl":null,"url":null,"abstract":"<div><p>The increase of tungsten sputtering yield with fluence was investigated during plasma (≤100 eV) irradiation. This analysis focused on the combined effects of surface binding energy and surface morphology caused by Ar retention. As post-mortem analysis, Ar concentration was measured with SIMS (Secondary Ion Mass Spectroscopy) and TDS (Thermal Desorption Spectroscopy). The Ar concentration saturated at 21 % of W number density during the sputtering process. The corresponding change in surface morphology causes a change in the local ion incident angle, which leads to a sputtering yield increase of 10 %. The increased Ar concentration leads to a decrease in surface binding energy and a change in surface morphology which increases W sputtering yield from 0.02 to 0.03 by ion energy 80 eV. Over time, W sputtering yield reaches saturation as a function of saturated Ar concentration. This result implies that the synergistic role of Ar concentration and surface morphology on sputtering yield. This sputtering yield enhancement occurs more seriously in the realistic condition of plasma-facing materials that face low-energy plasma.</p></div>","PeriodicalId":55133,"journal":{"name":"Fusion Engineering and Design","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fusion Engineering and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920379624004587","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The increase of tungsten sputtering yield with fluence was investigated during plasma (≤100 eV) irradiation. This analysis focused on the combined effects of surface binding energy and surface morphology caused by Ar retention. As post-mortem analysis, Ar concentration was measured with SIMS (Secondary Ion Mass Spectroscopy) and TDS (Thermal Desorption Spectroscopy). The Ar concentration saturated at 21 % of W number density during the sputtering process. The corresponding change in surface morphology causes a change in the local ion incident angle, which leads to a sputtering yield increase of 10 %. The increased Ar concentration leads to a decrease in surface binding energy and a change in surface morphology which increases W sputtering yield from 0.02 to 0.03 by ion energy 80 eV. Over time, W sputtering yield reaches saturation as a function of saturated Ar concentration. This result implies that the synergistic role of Ar concentration and surface morphology on sputtering yield. This sputtering yield enhancement occurs more seriously in the realistic condition of plasma-facing materials that face low-energy plasma.
期刊介绍:
The journal accepts papers about experiments (both plasma and technology), theory, models, methods, and designs in areas relating to technology, engineering, and applied science aspects of magnetic and inertial fusion energy. Specific areas of interest include: MFE and IFE design studies for experiments and reactors; fusion nuclear technologies and materials, including blankets and shields; analysis of reactor plasmas; plasma heating, fuelling, and vacuum systems; drivers, targets, and special technologies for IFE, controls and diagnostics; fuel cycle analysis and tritium reprocessing and handling; operations and remote maintenance of reactors; safety, decommissioning, and waste management; economic and environmental analysis of components and systems.