Convexity and concavity of a class of functions related to the elliptic functions

Mohamed Bouali
{"title":"Convexity and concavity of a class of functions related to the elliptic functions","authors":"Mohamed Bouali","doi":"arxiv-2407.14547","DOIUrl":null,"url":null,"abstract":"We investigate the convexity property on $(0,1)$ of the function\n$$f_a(x)=\\frac{{\\cal K}{(\\sqrt x)}}{a-(1/2)\\log(1-x)}.$$ We show that $f_a$ is\nstrictly convex on $(0,1)$ if and only if $a\\geq a_c$ and $1/f_a$ is strictly\nconvex on $(0,1)$ if and only if $a\\leq\\log 4$, where $a_c$ is some critical\nvalue. The second main result of the paper is to study the log-convexity and\nlog-concavity of the function $$h_p(x)=(1-x)^p{\\cal K}(\\sqrt x).$$ We prove\nthat $h_p$ is strictly log-concave on $(0,1)$ if and only if $p\\geq 7/32$ and\nstrictly log-convex if and only if $p\\leq 0$. This solves some problems posed\nby Yang and Tian and complete their result and a result of Alzer and Richards\nthat $f_a$ is strictly concave on $(0,1)$ if and only if $a=4/3$ and $1/f_a$ is\nstrictly concave on $(0,1)$ if and only if $a\\geq 8/5$. As applications of the\nconvexity and concavity, we establish among other inequalities, that for $a\\geq\na_c$ and all $r\\in(0,1)$ $$\\frac{2\\pi\\sqrt\\pi}{(2a+\\log 2)\\Gamma(3/4)^2}\\leq\n\\frac{{\\cal K}(\\sqrt r)}{a-\\frac12\\log (r)}+\\frac{{\\cal\nK}(\\sqrt{1-r})}{a-\\frac12\\log (1-r)}<1+\\frac\\pi{2a},$$ and for $p\\geq 3(2+\\sqrt\n2)/8$ and all $r\\in(0,1)$ $$\\sqrt{(r-r^2)^p{\\cal K}(\\sqrt{1-r}){\\cal K}(\\sqrt\nr)}< \\frac{\\pi\\sqrt\\pi}{2^{p+1}\\Gamma(3/4)^2}<\\frac{r^p{\\cal\nK}(\\sqrt{1-r})+(1-r)^p{\\cal K}(\\sqrt r)}{2}.$$","PeriodicalId":501502,"journal":{"name":"arXiv - MATH - General Mathematics","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.14547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the convexity property on $(0,1)$ of the function $$f_a(x)=\frac{{\cal K}{(\sqrt x)}}{a-(1/2)\log(1-x)}.$$ We show that $f_a$ is strictly convex on $(0,1)$ if and only if $a\geq a_c$ and $1/f_a$ is strictly convex on $(0,1)$ if and only if $a\leq\log 4$, where $a_c$ is some critical value. The second main result of the paper is to study the log-convexity and log-concavity of the function $$h_p(x)=(1-x)^p{\cal K}(\sqrt x).$$ We prove that $h_p$ is strictly log-concave on $(0,1)$ if and only if $p\geq 7/32$ and strictly log-convex if and only if $p\leq 0$. This solves some problems posed by Yang and Tian and complete their result and a result of Alzer and Richards that $f_a$ is strictly concave on $(0,1)$ if and only if $a=4/3$ and $1/f_a$ is strictly concave on $(0,1)$ if and only if $a\geq 8/5$. As applications of the convexity and concavity, we establish among other inequalities, that for $a\geq a_c$ and all $r\in(0,1)$ $$\frac{2\pi\sqrt\pi}{(2a+\log 2)\Gamma(3/4)^2}\leq \frac{{\cal K}(\sqrt r)}{a-\frac12\log (r)}+\frac{{\cal K}(\sqrt{1-r})}{a-\frac12\log (1-r)}<1+\frac\pi{2a},$$ and for $p\geq 3(2+\sqrt 2)/8$ and all $r\in(0,1)$ $$\sqrt{(r-r^2)^p{\cal K}(\sqrt{1-r}){\cal K}(\sqrt r)}< \frac{\pi\sqrt\pi}{2^{p+1}\Gamma(3/4)^2}<\frac{r^p{\cal K}(\sqrt{1-r})+(1-r)^p{\cal K}(\sqrt r)}{2}.$$
与椭圆函数有关的一类函数的凸性和凹性
我们研究了函数$$f_a(x)=\frac{{\cal K}{(\sqrt x)}}{a-(1/2)\log(1-x)} 在$(0,1)$上的凸性。$$ 我们证明,当且仅当 $a\geq a_c$ 时,$f_a$ 在 $(0,1)$ 上是严格凸的,当且仅当 $a\leq\log 4$ 时,$1/f_a$ 在 $(0,1)$ 上是严格凸的,其中 $a_c$ 是某个临界值。本文的第二个主要结果是研究函数 $$h_p(x)=(1-x)^p{cal K}(\sqrt x) 的对数凸性和对数凹性。我们证明,当且仅当 $p\geq 7/32$ 时,$h_p$ 在 $(0,1)$ 上是严格对数凹的,当且仅当 $p\leq 0$ 时,$h_p$ 是严格对数凸的。这就解决了杨和田提出的一些问题,并完成了他们的结果和阿尔泽和理查德的结果:当且仅当$a=4/3$时,$f_a$在$(0,1)$上是严格凹的,当且仅当$a\geq 8/5$时,$1/f_a$在$(0,1)$上是严格凹的。作为凸性和凹性的应用,我们建立了这样的不等式:对于 $a\geqa_c$ 和所有 $r\in(0、1)$$$frac{2pi\sqrt\pi}{(2a+\log 2)\Gamma(3/4)^2}\leq\frac{cal K}(\sqrt r)}{a-\frac12\log (r)}+\frac{calK}(\sqrt{1-r})}{a-\frac12\log (1-r)}<1+\frac\pi{2a}、$$ 并且对于 $p\geq 3(2+\sqrt2)/8$ 和所有 $r\in(0、1)$$$sqrt{(r-r^2)^p{cal K}(\sqrt{1-r}){cal K}(\sqrtr)}<\frac{pi\sqrt\pi}{2^{p+1}\Gamma(3/4)^2}<\frac{r^p{calK}(\sqrt{1-r})+(1-r)^p{cal K}(\sqrt r)}{2}。$$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信