Construction of Ground-State Solutions of the Gross–Pitaevskii–Poisson System Using Genetic Algorithms

IF 2.5 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Universe Pub Date : 2024-07-26 DOI:10.3390/universe10080309
Carlos Tena-Contreras, Iván Alvarez-Ríos, Francisco S. Guzmán
{"title":"Construction of Ground-State Solutions of the Gross–Pitaevskii–Poisson System Using Genetic Algorithms","authors":"Carlos Tena-Contreras, Iván Alvarez-Ríos, Francisco S. Guzmán","doi":"10.3390/universe10080309","DOIUrl":null,"url":null,"abstract":"We present the construction of the ground state of the Gross–Pitaevskii–Poisson equations using genetic algorithms. By employing numerical solutions, we develop an empirical formula for the density that works within the considered parameter space. Through the analysis of both numerical and empirical solutions, we investigate the stability of these ground-state solutions. Our findings reveal that while the numerical solution outperforms the empirical formula, both solutions lead to similar oscillation modes. We observe that the stability of the solutions depends on specific values of the central density and the nonlinear self-interaction term and establish an empirical criterion delineating the conditions under which the solutions exhibit stability or instability.","PeriodicalId":48646,"journal":{"name":"Universe","volume":"16 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Universe","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/universe10080309","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

We present the construction of the ground state of the Gross–Pitaevskii–Poisson equations using genetic algorithms. By employing numerical solutions, we develop an empirical formula for the density that works within the considered parameter space. Through the analysis of both numerical and empirical solutions, we investigate the stability of these ground-state solutions. Our findings reveal that while the numerical solution outperforms the empirical formula, both solutions lead to similar oscillation modes. We observe that the stability of the solutions depends on specific values of the central density and the nonlinear self-interaction term and establish an empirical criterion delineating the conditions under which the solutions exhibit stability or instability.
利用遗传算法构建格罗斯-皮塔耶夫斯基-泊松系统的地面状态解
我们介绍了利用遗传算法构建格罗斯-皮塔耶夫斯基-泊松方程基态的方法。通过使用数值解,我们开发了在所考虑的参数空间内有效的密度经验公式。通过对数值解和经验解的分析,我们研究了这些基态解的稳定性。我们的研究结果表明,虽然数值解优于经验公式,但两种解都会导致类似的振荡模式。我们观察到,解的稳定性取决于中心密度和非线性自相互作用项的特定值,并建立了一个经验标准,划定了解表现出稳定性或不稳定性的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Universe
Universe Physics and Astronomy-General Physics and Astronomy
CiteScore
4.30
自引率
17.20%
发文量
562
审稿时长
24.38 days
期刊介绍: Universe (ISSN 2218-1997) is an international peer-reviewed open access journal focused on fundamental principles in physics. It publishes reviews, research papers, communications, conference reports and short notes. Our aim is to encourage scientists to publish their research results in as much detail as possible. There is no restriction on the length of the papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信