Equation of state of Bose gases beyond the universal regime

Marti Planasdemunt, Jordi Pera, Jordi Boronat
{"title":"Equation of state of Bose gases beyond the universal regime","authors":"Marti Planasdemunt, Jordi Pera, Jordi Boronat","doi":"arxiv-2407.18059","DOIUrl":null,"url":null,"abstract":"The equation of state of dilute Bose gases, in which the energy only depends\non the $s$-wave scattering length, is rather unknown beyond the universal\nlimit. We have carried out a bunch of diffusion Monte Carlo calculations up to\ngas parameters of $10^{-2}$ to explore how the departure from the universality\nemerges. Using different model potentials, we calculate the energies of the gas\nin an exact way, within some statistical noise, and report the results as a\nfunction of the three relevant scattering parameters: the $s$-wave scattering\nlength $a_0$, the $s$-wave effective range $r_0$, and the $p$-wave scattering\nlength $a_1$. If the effective range is not large we observe universality in\nterms of $a_0$ and $r_0$ up to gas parameters of $10^{-2}$. If $r_0$ grows the\nregime of universality in these two parameters is reduced and effects of $a_1$\nstart to be observed. In the $(a_0,r_0)$ universal regime we propose an\nanalytical law that reproduces fairly well the exact energies.","PeriodicalId":501521,"journal":{"name":"arXiv - PHYS - Quantum Gases","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Quantum Gases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.18059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The equation of state of dilute Bose gases, in which the energy only depends on the $s$-wave scattering length, is rather unknown beyond the universal limit. We have carried out a bunch of diffusion Monte Carlo calculations up to gas parameters of $10^{-2}$ to explore how the departure from the universality emerges. Using different model potentials, we calculate the energies of the gas in an exact way, within some statistical noise, and report the results as a function of the three relevant scattering parameters: the $s$-wave scattering length $a_0$, the $s$-wave effective range $r_0$, and the $p$-wave scattering length $a_1$. If the effective range is not large we observe universality in terms of $a_0$ and $r_0$ up to gas parameters of $10^{-2}$. If $r_0$ grows the regime of universality in these two parameters is reduced and effects of $a_1$ start to be observed. In the $(a_0,r_0)$ universal regime we propose an analytical law that reproduces fairly well the exact energies.
超越普适机制的玻色气体状态方程
稀薄玻色气体的状态方程中,能量只依赖于 $s$ 波的散射长度,而在普遍极限之外,这种状态方程是相当未知的。我们进行了一系列扩散蒙特卡洛计算,以探讨如何偏离普遍性,直至气体参数达到 $10^{-2}$。我们使用不同的模型电势,在一定的统计噪声范围内精确地计算了气体的能量,并将结果报告为三个相关散射参数的函数:$s$波散射长度$a_0$、$s$波有效范围$r_0$和$p$波散射长度$a_1$。如果有效范围不大,在气体参数为 10^{-2}$ 的情况下,我们可以观察到 $a_0$ 和 $r_0$ 之间的普遍性。如果 $r_0$ 增大,这两个参数的普遍性就会减弱,并开始观测到 $a_1$ 的影响。在$(a_0,r_0)$的普遍性条件下,我们提出了一个分析定律,它相当好地再现了精确的能量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信