The Likely Maximum Size of Twin Subtrees in a Large Random Tree

Pub Date : 2024-07-27 DOI:10.1007/s00026-024-00711-4
Miklós Bóna, Ovidiu Costin, Boris Pittel
{"title":"The Likely Maximum Size of Twin Subtrees in a Large Random Tree","authors":"Miklós Bóna, Ovidiu Costin, Boris Pittel","doi":"10.1007/s00026-024-00711-4","DOIUrl":null,"url":null,"abstract":"<p>We call a pair of vertex-disjoint, induced subtrees of a rooted tree twins if they have the same counts of vertices by out-degrees. The likely maximum size of twins in a uniformly random, rooted Cayley tree of size <span>\\(n\\rightarrow \\infty \\)</span> is studied. It is shown that the expected number of twins of size <span>\\((2+\\delta )\\sqrt{\\log n\\cdot \\log \\log n}\\)</span> approaches zero, while the expected number of twins of size <span>\\((2-\\delta )\\sqrt{\\log n\\cdot \\log \\log n}\\)</span> approaches infinity.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00026-024-00711-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We call a pair of vertex-disjoint, induced subtrees of a rooted tree twins if they have the same counts of vertices by out-degrees. The likely maximum size of twins in a uniformly random, rooted Cayley tree of size \(n\rightarrow \infty \) is studied. It is shown that the expected number of twins of size \((2+\delta )\sqrt{\log n\cdot \log \log n}\) approaches zero, while the expected number of twins of size \((2-\delta )\sqrt{\log n\cdot \log \log n}\) approaches infinity.

分享
查看原文
大型随机树中双子树可能的最大尺寸
如果有根树的一对顶点不相交的诱导子树的顶点数和外度数相同,我们就称它们为孪生树。我们研究了大小为 \(n\rightarrow \infty \)的均匀随机有根 Cayley 树中孪生树的最大可能大小。结果表明,大小为((2+\delta)\sqrt{log n\cdot \log \log n}\)的孪生树的预期数量趋近于零,而大小为((2-\delta)\sqrt{log n\cdot \log \log n}\)的孪生树的预期数量趋近于无穷大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信