{"title":"The Likely Maximum Size of Twin Subtrees in a Large Random Tree","authors":"Miklós Bóna, Ovidiu Costin, Boris Pittel","doi":"10.1007/s00026-024-00711-4","DOIUrl":null,"url":null,"abstract":"<p>We call a pair of vertex-disjoint, induced subtrees of a rooted tree twins if they have the same counts of vertices by out-degrees. The likely maximum size of twins in a uniformly random, rooted Cayley tree of size <span>\\(n\\rightarrow \\infty \\)</span> is studied. It is shown that the expected number of twins of size <span>\\((2+\\delta )\\sqrt{\\log n\\cdot \\log \\log n}\\)</span> approaches zero, while the expected number of twins of size <span>\\((2-\\delta )\\sqrt{\\log n\\cdot \\log \\log n}\\)</span> approaches infinity.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00026-024-00711-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We call a pair of vertex-disjoint, induced subtrees of a rooted tree twins if they have the same counts of vertices by out-degrees. The likely maximum size of twins in a uniformly random, rooted Cayley tree of size \(n\rightarrow \infty \) is studied. It is shown that the expected number of twins of size \((2+\delta )\sqrt{\log n\cdot \log \log n}\) approaches zero, while the expected number of twins of size \((2-\delta )\sqrt{\log n\cdot \log \log n}\) approaches infinity.