Jingsheng Li, Tianxiang Xue, Jiayi Zhao, Jingmin Ge, Yufang Min, Wei Su, Kun Zhan
{"title":"High-resolution cloud detection network","authors":"Jingsheng Li, Tianxiang Xue, Jiayi Zhao, Jingmin Ge, Yufang Min, Wei Su, Kun Zhan","doi":"10.1117/1.jei.33.4.043027","DOIUrl":null,"url":null,"abstract":"The complexity of clouds, particularly in terms of texture detail at high resolutions, has not been well explored by most existing cloud detection networks. We introduce the high-resolution cloud detection network (HR-cloud-Net), which utilizes a hierarchical high-resolution integration approach. HR-cloud-Net integrates a high-resolution representation module, layer-wise cascaded feature fusion module, and multiresolution pyramid pooling module to effectively capture complex cloud features. This architecture preserves detailed cloud texture information while facilitating feature exchange across different resolutions, thereby enhancing the overall performance in cloud detection. Additionally, an approach is introduced wherein a student view, trained on noisy augmented images, is supervised by a teacher view processing normal images. This setup enables the student to learn from cleaner supervisions provided by the teacher, leading to an improved performance. Extensive evaluations on three optical satellite image cloud detection datasets validate the superior performance of HR-cloud-Net compared with existing methods.","PeriodicalId":54843,"journal":{"name":"Journal of Electronic Imaging","volume":"15 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Imaging","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1117/1.jei.33.4.043027","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The complexity of clouds, particularly in terms of texture detail at high resolutions, has not been well explored by most existing cloud detection networks. We introduce the high-resolution cloud detection network (HR-cloud-Net), which utilizes a hierarchical high-resolution integration approach. HR-cloud-Net integrates a high-resolution representation module, layer-wise cascaded feature fusion module, and multiresolution pyramid pooling module to effectively capture complex cloud features. This architecture preserves detailed cloud texture information while facilitating feature exchange across different resolutions, thereby enhancing the overall performance in cloud detection. Additionally, an approach is introduced wherein a student view, trained on noisy augmented images, is supervised by a teacher view processing normal images. This setup enables the student to learn from cleaner supervisions provided by the teacher, leading to an improved performance. Extensive evaluations on three optical satellite image cloud detection datasets validate the superior performance of HR-cloud-Net compared with existing methods.
期刊介绍:
The Journal of Electronic Imaging publishes peer-reviewed papers in all technology areas that make up the field of electronic imaging and are normally considered in the design, engineering, and applications of electronic imaging systems.