Savan Hirpara, Kaushlendra Kumar, Olaf Lechtenfeld, Gabriel Picanço Costa
{"title":"Exact gauge fields from anti-de Sitter space","authors":"Savan Hirpara, Kaushlendra Kumar, Olaf Lechtenfeld, Gabriel Picanço Costa","doi":"10.1063/5.0150027","DOIUrl":null,"url":null,"abstract":"In 1977 Lüscher found a class of SO(4)-symmetric SU(2) Yang–Mills solutions in Minkowski space, which have been rederived 40 years later by employing the isometry S3 ≅ SU(2) and conformally mapping SU(2)-equivariant solutions of the Yang–Mills equations on (two copies of) de Sitter space dS4≅R×S3. Here we present the noncompact analog of this construction via AdS3 ≅ SU(1, 1). On (two copies of) anti-de Sitter space AdS4≅R×AdS3 we write down SU(1,1)-equivariant Yang–Mills solutions and conformally map them to R1,3. This yields a two-parameter family of exact SU(1,1) Yang–Mills solutions on Minkowski space, whose field strengths are essentially rational functions of Cartesian coordinates. Gluing the two AdS copies happens on a dS3 hyperboloid in Minkowski space, and our Yang–Mills configurations are singular on a two-dimensional hyperboloid dS3∩R1,2. This renders their action and the energy infinite, although the field strengths fall off fast asymptotically except along the lightcone. We also construct Abelian solutions, which share these properties but are less symmetric and of zero action.","PeriodicalId":16174,"journal":{"name":"Journal of Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0150027","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In 1977 Lüscher found a class of SO(4)-symmetric SU(2) Yang–Mills solutions in Minkowski space, which have been rederived 40 years later by employing the isometry S3 ≅ SU(2) and conformally mapping SU(2)-equivariant solutions of the Yang–Mills equations on (two copies of) de Sitter space dS4≅R×S3. Here we present the noncompact analog of this construction via AdS3 ≅ SU(1, 1). On (two copies of) anti-de Sitter space AdS4≅R×AdS3 we write down SU(1,1)-equivariant Yang–Mills solutions and conformally map them to R1,3. This yields a two-parameter family of exact SU(1,1) Yang–Mills solutions on Minkowski space, whose field strengths are essentially rational functions of Cartesian coordinates. Gluing the two AdS copies happens on a dS3 hyperboloid in Minkowski space, and our Yang–Mills configurations are singular on a two-dimensional hyperboloid dS3∩R1,2. This renders their action and the energy infinite, although the field strengths fall off fast asymptotically except along the lightcone. We also construct Abelian solutions, which share these properties but are less symmetric and of zero action.
期刊介绍:
Since 1960, the Journal of Mathematical Physics (JMP) has published some of the best papers from outstanding mathematicians and physicists. JMP was the first journal in the field of mathematical physics and publishes research that connects the application of mathematics to problems in physics, as well as illustrates the development of mathematical methods for such applications and for the formulation of physical theories.
The Journal of Mathematical Physics (JMP) features content in all areas of mathematical physics. Specifically, the articles focus on areas of research that illustrate the application of mathematics to problems in physics, the development of mathematical methods for such applications, and for the formulation of physical theories. The mathematics featured in the articles are written so that theoretical physicists can understand them. JMP also publishes review articles on mathematical subjects relevant to physics as well as special issues that combine manuscripts on a topic of current interest to the mathematical physics community.
JMP welcomes original research of the highest quality in all active areas of mathematical physics, including the following:
Partial Differential Equations
Representation Theory and Algebraic Methods
Many Body and Condensed Matter Physics
Quantum Mechanics - General and Nonrelativistic
Quantum Information and Computation
Relativistic Quantum Mechanics, Quantum Field Theory, Quantum Gravity, and String Theory
General Relativity and Gravitation
Dynamical Systems
Classical Mechanics and Classical Fields
Fluids
Statistical Physics
Methods of Mathematical Physics.