Hofstadter-Toda spectral duality and quantum groups

IF 1.2 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Pasquale Marra, Valerio Proietti, Xiaobing Sheng
{"title":"Hofstadter-Toda spectral duality and quantum groups","authors":"Pasquale Marra, Valerio Proietti, Xiaobing Sheng","doi":"10.1063/5.0202635","DOIUrl":null,"url":null,"abstract":"The Hofstadter model allows to describe and understand several phenomena in condensed matter such as the quantum Hall effect, Anderson localization, charge pumping, and flat-bands in quasiperiodic structures, and is a rare example of fractality in the quantum world. An apparently unrelated system, the relativistic Toda lattice, has been extensively studied in the context of complex nonlinear dynamics, and more recently for its connection to supersymmetric Yang-Mills theories and topological string theories on Calabi-Yau manifolds in high-energy physics. Here we discuss a recently discovered spectral relationship between the Hofstadter model and the relativistic Toda lattice which has been later conjectured to be related to the Langlands duality of quantum groups. Moreover, by employing similarity transformations compatible with the quantum group structure, we establish a formula parametrizing the energy spectrum of the Hofstadter model in terms of elementary symmetric polynomials and Chebyshev polynomials. The main tools used are the spectral duality of tridiagonal matrices and the representation theory of the elementary quantum group.","PeriodicalId":16174,"journal":{"name":"Journal of Mathematical Physics","volume":"15 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0202635","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The Hofstadter model allows to describe and understand several phenomena in condensed matter such as the quantum Hall effect, Anderson localization, charge pumping, and flat-bands in quasiperiodic structures, and is a rare example of fractality in the quantum world. An apparently unrelated system, the relativistic Toda lattice, has been extensively studied in the context of complex nonlinear dynamics, and more recently for its connection to supersymmetric Yang-Mills theories and topological string theories on Calabi-Yau manifolds in high-energy physics. Here we discuss a recently discovered spectral relationship between the Hofstadter model and the relativistic Toda lattice which has been later conjectured to be related to the Langlands duality of quantum groups. Moreover, by employing similarity transformations compatible with the quantum group structure, we establish a formula parametrizing the energy spectrum of the Hofstadter model in terms of elementary symmetric polynomials and Chebyshev polynomials. The main tools used are the spectral duality of tridiagonal matrices and the representation theory of the elementary quantum group.
霍夫斯塔特-托达谱对偶性与量子群
霍夫斯塔德模型可以描述和理解凝聚态物质中的一些现象,如量子霍尔效应、安德森局域化、电荷泵浦和准周期结构中的平带,是量子世界中分形的一个罕见例子。相对论户田晶格是一个看似毫不相干的系统,但在复杂非线性动力学的背景下已被广泛研究,最近又因其与高能物理中 Calabi-Yau 流形上的超对称杨-米尔斯理论和拓扑弦理论的联系而被广泛研究。在此,我们讨论最近发现的霍夫斯塔德模型与相对论户田晶格之间的谱关系,这种谱关系后来被猜测与量子群的朗兰兹对偶性有关。此外,通过采用与量子群结构兼容的相似变换,我们建立了一个公式,用基本对称多项式和切比雪夫多项式参数化了霍夫斯塔德模型的能谱。使用的主要工具是三对角矩阵的谱对偶性和基本量子群的表示理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Mathematical Physics
Journal of Mathematical Physics 物理-物理:数学物理
CiteScore
2.20
自引率
15.40%
发文量
396
审稿时长
4.3 months
期刊介绍: Since 1960, the Journal of Mathematical Physics (JMP) has published some of the best papers from outstanding mathematicians and physicists. JMP was the first journal in the field of mathematical physics and publishes research that connects the application of mathematics to problems in physics, as well as illustrates the development of mathematical methods for such applications and for the formulation of physical theories. The Journal of Mathematical Physics (JMP) features content in all areas of mathematical physics. Specifically, the articles focus on areas of research that illustrate the application of mathematics to problems in physics, the development of mathematical methods for such applications, and for the formulation of physical theories. The mathematics featured in the articles are written so that theoretical physicists can understand them. JMP also publishes review articles on mathematical subjects relevant to physics as well as special issues that combine manuscripts on a topic of current interest to the mathematical physics community. JMP welcomes original research of the highest quality in all active areas of mathematical physics, including the following: Partial Differential Equations Representation Theory and Algebraic Methods Many Body and Condensed Matter Physics Quantum Mechanics - General and Nonrelativistic Quantum Information and Computation Relativistic Quantum Mechanics, Quantum Field Theory, Quantum Gravity, and String Theory General Relativity and Gravitation Dynamical Systems Classical Mechanics and Classical Fields Fluids Statistical Physics Methods of Mathematical Physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信