Boundary value problems for a mixed-type loaded equation with a characteristic and noncharacteristic line of type change

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Umida Baltaeva, Hamrobek Hayitbayev, Jamol I. Baltaev
{"title":"Boundary value problems for a mixed-type loaded equation with a characteristic and noncharacteristic line of type change","authors":"Umida Baltaeva, Hamrobek Hayitbayev, Jamol I. Baltaev","doi":"10.1007/s12190-024-02190-5","DOIUrl":null,"url":null,"abstract":"<p>In this work, we consider boundary value problems with characteristic, non-characteristic, and two mixed lines of type change for a fractionally loaded equation. The equation under consideration is a loaded parabolic-hyperbolic type with a fractional integral operator, where the hyperbolic part is a characteristic load. By assuming the load is characteristic under necessary conditions on the given functions, we prove the unique solvability of the resulting integral equations derived from the formulated problems. Consequently, the problems also have unique solutions.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12190-024-02190-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we consider boundary value problems with characteristic, non-characteristic, and two mixed lines of type change for a fractionally loaded equation. The equation under consideration is a loaded parabolic-hyperbolic type with a fractional integral operator, where the hyperbolic part is a characteristic load. By assuming the load is characteristic under necessary conditions on the given functions, we prove the unique solvability of the resulting integral equations derived from the formulated problems. Consequently, the problems also have unique solutions.

Abstract Image

具有特征和非特征线型变化的混合型负载方程的边界值问题
在这项工作中,我们考虑了分式载荷方程的特征、非特征和两种混合线型变化的边界值问题。所考虑的方程是带有分数积分算子的抛物线-双曲型负载方程,其中双曲部分是特征负载。通过在给定函数的必要条件下假设载荷是特征的,我们证明了由所提问题导出的积分方程的唯一可解性。因此,这些问题也有唯一解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信