Stability of quaternion matrix polynomials

Pallavi Basavaraju, Shrinath Hadimani, Sachindranath Jayaraman
{"title":"Stability of quaternion matrix polynomials","authors":"Pallavi Basavaraju, Shrinath Hadimani, Sachindranath Jayaraman","doi":"arxiv-2407.16603","DOIUrl":null,"url":null,"abstract":"A right quaternion matrix polynomial is an expression of the form\n$P(\\lambda)= \\displaystyle \\sum_{i=0}^{m}A_i \\lambda^i$, where $A_i$'s are $n\n\\times n$ quaternion matrices with $A_m \\neq 0$. The aim of this manuscript is\nto determine the location of right eigenvalues of $P(\\lambda)$ relative to\ncertain subsets of the set of quaternions. In particular, we extend the notion\nof (hyper)stability of complex matrix polynomials to quaternion matrix\npolynomials and obtain location of right eigenvalues of $P(\\lambda)$ using the\nfollowing methods: $(1)$ we give a relation between (hyper)stability of a\nquaternion matrix polynomial and its complex adjoint matrix polynomial, $(2)$\nwe prove that $P(\\lambda)$ is stable with respect to an open (closed) ball in\nthe set of quaternions, centered at a complex number if and only if it is\nstable with respect to its intersection with the set of complex numbers and\n$(3)$ as a consequence of $(1)$ and $(2)$, we prove that right eigenvalues of\n$P(\\lambda)$ lie between two concentric balls of specific radii in the set of\nquaternions centered at the origin. We identify classes of quaternion matrix\npolynomials for which stability and hyperstability are equivalent. We finally\ndeduce hyperstability of certain univariate quaternion matrix polynomials via\nstability of certain multivariate quaternion matrix polynomials.","PeriodicalId":501373,"journal":{"name":"arXiv - MATH - Spectral Theory","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Spectral Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.16603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A right quaternion matrix polynomial is an expression of the form $P(\lambda)= \displaystyle \sum_{i=0}^{m}A_i \lambda^i$, where $A_i$'s are $n \times n$ quaternion matrices with $A_m \neq 0$. The aim of this manuscript is to determine the location of right eigenvalues of $P(\lambda)$ relative to certain subsets of the set of quaternions. In particular, we extend the notion of (hyper)stability of complex matrix polynomials to quaternion matrix polynomials and obtain location of right eigenvalues of $P(\lambda)$ using the following methods: $(1)$ we give a relation between (hyper)stability of a quaternion matrix polynomial and its complex adjoint matrix polynomial, $(2)$ we prove that $P(\lambda)$ is stable with respect to an open (closed) ball in the set of quaternions, centered at a complex number if and only if it is stable with respect to its intersection with the set of complex numbers and $(3)$ as a consequence of $(1)$ and $(2)$, we prove that right eigenvalues of $P(\lambda)$ lie between two concentric balls of specific radii in the set of quaternions centered at the origin. We identify classes of quaternion matrix polynomials for which stability and hyperstability are equivalent. We finally deduce hyperstability of certain univariate quaternion matrix polynomials via stability of certain multivariate quaternion matrix polynomials.
四元矩阵多项式的稳定性
右四元数矩阵多项式是一个形式为$P(\lambda)= \displaystyle \sum_{i=0}^{m}A_i \lambda^i$的表达式,其中$A_i$是$A_m \neq 0$的n次n$四元数矩阵。本手稿的目的是确定 $P(\lambda)$ 的右特征值相对于四元数集的某些子集的位置。特别是,我们把复矩阵多项式的(超)稳定性概念扩展到四元矩阵多项式,并用以下方法得到 $P(\lambda)$ 的右特征值的位置:$(1)$我们给出了四元矩阵多项式的(超)稳定性与其复邻接矩阵多项式之间的关系,$(2)$我们证明了$P(\lambda)$相对于四元集合中的一个开(闭)球是稳定的、并且$(3)$ 作为$(1)$ 和$(2)$ 的结果,我们证明了$P(\lambda)$ 的右特征值位于以原点为中心的四元数集合中两个特定半径的同心球之间。我们确定了稳定性和超稳定性等价的四元矩阵多项式类。最后,我们推导出某些单变量四元矩阵多项式的超稳定性和某些多变量四元矩阵多项式的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信