A new approach to inverse Sturm-Liouville problems based on point interaction

Min Zhao, Jiangang Qi, Xiao Chen
{"title":"A new approach to inverse Sturm-Liouville problems based on point interaction","authors":"Min Zhao, Jiangang Qi, Xiao Chen","doi":"arxiv-2407.17223","DOIUrl":null,"url":null,"abstract":"In the present paper, motivated by point interaction, we propose a new and\nexplicit approach to inverse Sturm-Liouville eigenvalue problems under\nDirichlet boundary. More precisely, when a given Sturm-Liouville eigenvalue\nproblem with the unknown integrable potential interacts with $\\delta$-function\npotentials, we obtain a family of perturbation problems, called point\ninteraction models in quantum mechanics. Then, only depending on the first\neigenvalues of these perturbed problems, we define and study the first\neigenvalue function, by which the desired potential can be expressed explicitly\nand uniquely. As by-products, using the analytic function theoretic tools, we\nalso generalize several fundamental theorems of classical Sturm-Liouville\nproblems to measure differential equations.","PeriodicalId":501373,"journal":{"name":"arXiv - MATH - Spectral Theory","volume":"62 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Spectral Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.17223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the present paper, motivated by point interaction, we propose a new and explicit approach to inverse Sturm-Liouville eigenvalue problems under Dirichlet boundary. More precisely, when a given Sturm-Liouville eigenvalue problem with the unknown integrable potential interacts with $\delta$-function potentials, we obtain a family of perturbation problems, called point interaction models in quantum mechanics. Then, only depending on the first eigenvalues of these perturbed problems, we define and study the first eigenvalue function, by which the desired potential can be expressed explicitly and uniquely. As by-products, using the analytic function theoretic tools, we also generalize several fundamental theorems of classical Sturm-Liouville problems to measure differential equations.
基于点相互作用的 Sturm-Liouville 逆问题新方法
在本文中,受点相互作用的启发,我们提出了一种新的、明确的方法来解决德里赫特边界下的反斯特姆-利乌维尔特征值问题。更确切地说,当一个给定的具有未知可积分势的 Sturm-Liouville 特征值问题与 $\delta$ 函数势相互作用时,我们得到了一族扰动问题,即量子力学中的点相互作用模型。然后,仅根据这些扰动问题的第一特征值,我们定义并研究了第一特征值函数,通过该函数可以明确而唯一地表达所需的势。作为副产品,利用解析函数论工具,我们还将经典 Sturm-Liouvilleproblems 的几个基本定理推广到测量微分方程中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信