{"title":"Characteristics of Dissimilar Ti/Al Butt-Lap Joint Fabricated via Ultrasonic-Assisted Friction Stir Welding","authors":"Yu Chen, Fenghe Zhang","doi":"10.1007/s12666-024-03403-y","DOIUrl":null,"url":null,"abstract":"<p>Dissimilar Ti/Al butt-lap joints were fabricated via ultrasonic-assisted friction stir welding, and the material flow was enhanced due to the acoustoplastic effect, inhibiting the formation of welding defects. Ultrasonic vibration refined the microstructures and accelerated the dynamic recrystallization in the nugget zone. Consequently, 10–15% decrease in the average grain diameter and 20% increase in the fraction of high angle grain boundaries were obtained. The intermetallic compounds layer of TiAl<sub>3</sub> generated along the butt-line, while the atomic diffusion layer formed along the lap-line. With the help of ultrasonic activation, the atomic diffusion layer got thickened (from 1.6 to 2.3 μm), improving the peak load/elongation of joint from 1.2 KN/3% to 2.1 KN/6%. Furthermore, the novel double-ultrasonic-sources were utilized, and the joint made by this method exhibited a more satisfactory welding performance; the average grain size of nugget zone decreased to 5 μm, and the peak load/elongation of joint increased to 2.6 KN/8%.</p>","PeriodicalId":23224,"journal":{"name":"Transactions of The Indian Institute of Metals","volume":"14 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of The Indian Institute of Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12666-024-03403-y","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
Dissimilar Ti/Al butt-lap joints were fabricated via ultrasonic-assisted friction stir welding, and the material flow was enhanced due to the acoustoplastic effect, inhibiting the formation of welding defects. Ultrasonic vibration refined the microstructures and accelerated the dynamic recrystallization in the nugget zone. Consequently, 10–15% decrease in the average grain diameter and 20% increase in the fraction of high angle grain boundaries were obtained. The intermetallic compounds layer of TiAl3 generated along the butt-line, while the atomic diffusion layer formed along the lap-line. With the help of ultrasonic activation, the atomic diffusion layer got thickened (from 1.6 to 2.3 μm), improving the peak load/elongation of joint from 1.2 KN/3% to 2.1 KN/6%. Furthermore, the novel double-ultrasonic-sources were utilized, and the joint made by this method exhibited a more satisfactory welding performance; the average grain size of nugget zone decreased to 5 μm, and the peak load/elongation of joint increased to 2.6 KN/8%.
期刊介绍:
Transactions of the Indian Institute of Metals publishes original research articles and reviews on ferrous and non-ferrous process metallurgy, structural and functional materials development, physical, chemical and mechanical metallurgy, welding science and technology, metal forming, particulate technologies, surface engineering, characterization of materials, thermodynamics and kinetics, materials modelling and other allied branches of Metallurgy and Materials Engineering.
Transactions of the Indian Institute of Metals also serves as a forum for rapid publication of recent advances in all the branches of Metallurgy and Materials Engineering. The technical content of the journal is scrutinized by the Editorial Board composed of experts from various disciplines of Metallurgy and Materials Engineering. Editorial Advisory Board provides valuable advice on technical matters related to the publication of Transactions.