Physical Zero-Knowledge Proof Protocols for Topswops and Botdrops

IF 2 4区 计算机科学 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Yuichi Komano, Takaaki Mizuki
{"title":"Physical Zero-Knowledge Proof Protocols for Topswops and Botdrops","authors":"Yuichi Komano, Takaaki Mizuki","doi":"10.1007/s00354-024-00272-3","DOIUrl":null,"url":null,"abstract":"<p>Suppose that a sequence of <span>\\({\\varvec{n}}\\)</span> cards, numbered 1 to <span>\\({\\varvec{n}}\\)</span>, is placed face up in random order. Let <span>\\({\\varvec{k}}\\)</span> be the number on the first card in the sequence. Then take the first <span>\\({\\varvec{k}}\\)</span> cards from the sequence, rearrange that subsequence of <span>\\({\\varvec{k}}\\)</span> cards in reverse order, and return them to the original sequence. Repeat this prefix reversal until the number on the first card in the sequence becomes 1. This is a one-player card game called Topswops. The computational complexity of Topswops has not been thoroughly investigated. For example, letting <span>\\({\\varvec{f}}({\\varvec{n}})\\)</span> denote the maximum number of prefix reversals for Topswops with <span>\\({\\varvec{n}}\\)</span> cards, values of <span>\\({\\varvec{f}}({\\varvec{n}})\\)</span> for <span>\\({\\varvec{n}}\\ge 20\\)</span> remain unknown. In general, there is no known efficient algorithm for finding an initial sequence of <span>\\({\\varvec{n}}\\)</span> cards that requires exactly <span>\\(\\ell \\)</span> prefix reversals for any integers <span>\\({\\varvec{n}}\\)</span> and <span>\\({\\varvec{\\ell }}\\)</span>. In this paper, using a deck of cards, we propose a physical zero-knowledge proof protocol that allows a prover to convince a verifier that the prover knows an initial sequence of <span>\\({\\varvec{n}}\\)</span> cards that requires <span>\\({\\varvec{\\ell }}\\)</span> prefix reversals without leaking knowledge of that sequence. We also deal with Botdrops, a variant of Topswops.</p>","PeriodicalId":54726,"journal":{"name":"New Generation Computing","volume":"30 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Generation Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00354-024-00272-3","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Suppose that a sequence of \({\varvec{n}}\) cards, numbered 1 to \({\varvec{n}}\), is placed face up in random order. Let \({\varvec{k}}\) be the number on the first card in the sequence. Then take the first \({\varvec{k}}\) cards from the sequence, rearrange that subsequence of \({\varvec{k}}\) cards in reverse order, and return them to the original sequence. Repeat this prefix reversal until the number on the first card in the sequence becomes 1. This is a one-player card game called Topswops. The computational complexity of Topswops has not been thoroughly investigated. For example, letting \({\varvec{f}}({\varvec{n}})\) denote the maximum number of prefix reversals for Topswops with \({\varvec{n}}\) cards, values of \({\varvec{f}}({\varvec{n}})\) for \({\varvec{n}}\ge 20\) remain unknown. In general, there is no known efficient algorithm for finding an initial sequence of \({\varvec{n}}\) cards that requires exactly \(\ell \) prefix reversals for any integers \({\varvec{n}}\) and \({\varvec{\ell }}\). In this paper, using a deck of cards, we propose a physical zero-knowledge proof protocol that allows a prover to convince a verifier that the prover knows an initial sequence of \({\varvec{n}}\) cards that requires \({\varvec{\ell }}\) prefix reversals without leaking knowledge of that sequence. We also deal with Botdrops, a variant of Topswops.

针对 Topswops 和 Botdrops 的物理零知识证明协议
假设一连串编号为1到\({\varvec{n}}\)的卡片按随机顺序面朝上摆放。让 \({\varvec{k}}\ 成为序列中第一张牌上的数字。然后从序列中取出第一张牌,将这张牌的子序列按相反的顺序重新排列,并将它们放回原来的序列中。重复这个前缀颠倒的过程,直到序列中第一张牌上的数字变成 1。这是一个名为 Topswops 的单人纸牌游戏。Topswops 的计算复杂度尚未得到深入研究。例如,让 \({\varvec{f}}({\varvec{n}})\表示有 \({\varvec{n}}\) 张牌的 Twops 的最大前缀反转次数,但是 \({\varvec{f}}({\varvec{n}})\ 对于 \({\varvec{n}}ge 20\) 的 \({\varvec{f}}({\varvec{n}})\值仍然未知。一般来说,对于任何整数\({\varvec{n}}\)和\({\varvec{ell }}\),都没有已知的高效算法来找到一个完全需要\(\ell \)前缀反转的\({\varvec{n}}\)牌的初始序列。在本文中,我们使用一副扑克牌,提出了一种物理零知识证明协议,它允许证明者在不泄露该序列知识的情况下,让验证者相信证明者知道一个需要 \({\varvec{\ell }}) 前缀反转的 \({\varvec{\ell }}) 牌的初始序列。我们还处理了 Botdrops,它是 Topswops 的一个变种。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
New Generation Computing
New Generation Computing 工程技术-计算机:理论方法
CiteScore
5.90
自引率
15.40%
发文量
47
审稿时长
>12 weeks
期刊介绍: The journal is specially intended to support the development of new computational and cognitive paradigms stemming from the cross-fertilization of various research fields. These fields include, but are not limited to, programming (logic, constraint, functional, object-oriented), distributed/parallel computing, knowledge-based systems, agent-oriented systems, and cognitive aspects of human embodied knowledge. It also encourages theoretical and/or practical papers concerning all types of learning, knowledge discovery, evolutionary mechanisms, human cognition and learning, and emergent systems that can lead to key technologies enabling us to build more complex and intelligent systems. The editorial board hopes that New Generation Computing will work as a catalyst among active researchers with broad interests by ensuring a smooth publication process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信