Enhancing phosphorus availability in biochar: Comparing sulfuric acid treatment to biological acidification approaches

IF 2.6 3区 农林科学 Q1 AGRONOMY
Clara Kopp, Iria Regueiro, Lars Stoumann‐Jensen, Dorette Müller‐Stöver, David Fangueiro
{"title":"Enhancing phosphorus availability in biochar: Comparing sulfuric acid treatment to biological acidification approaches","authors":"Clara Kopp, Iria Regueiro, Lars Stoumann‐Jensen, Dorette Müller‐Stöver, David Fangueiro","doi":"10.1002/jpln.202300404","DOIUrl":null,"url":null,"abstract":"BackgroundThe use of sulfuric acid (SA) to acidify biochars is known to enhance their phosphorus (P) fertilizer value. Potentially, biological approaches such as lowering the pH of biochar by lactic acid co‐fermentation or applying biochar with a nitrification inhibitor (NI) to reduce rhizosphere pH are an alternative to SA.AimThis study aimed to evaluate the two methods for increasing plant P availability from two biochars and compare them with SA‐treated biochars (as a reference) in a pot experiment.MethodsMeat and bone meal biochar (MB‐C) and digestate solids biochar (DS‐C) were bio‐acidified (BA) by lactic acid fermentation with organic waste. The untreated, SA‐treated, BA biochars, and biochars co‐applied with a NI (3,4‐dimethylpyrazolephosphate) were tested in a pot experiment with maize.ResultsThe fermentation reduced the pH of the organic waste biochar mixtures to <4.3 and increased water‐extractable P (WEP) to 30% of total P. The untreated biochars had a mineral fertilizer replacement value of >50% and SA increased replacement values to ≈100%. The application of NI did not affect rhizosphere pH or P uptake. The BA MB‐C increased soil solution P concentration, but P uptake did not significantly increase. The application of the BA DS‐C raised soil pH and reduced plant P uptake and biomass.ConclusionThe untreated biochars showed considerable P fertilizer effectiveness, suggesting that acidification may not always be necessary. Rhizosphere acidification and the bio‐acidification of biochars were not effective in further increasing P uptake, despite higher levels of WEP.","PeriodicalId":16802,"journal":{"name":"Journal of Plant Nutrition and Soil Science","volume":"101 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Nutrition and Soil Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/jpln.202300404","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

BackgroundThe use of sulfuric acid (SA) to acidify biochars is known to enhance their phosphorus (P) fertilizer value. Potentially, biological approaches such as lowering the pH of biochar by lactic acid co‐fermentation or applying biochar with a nitrification inhibitor (NI) to reduce rhizosphere pH are an alternative to SA.AimThis study aimed to evaluate the two methods for increasing plant P availability from two biochars and compare them with SA‐treated biochars (as a reference) in a pot experiment.MethodsMeat and bone meal biochar (MB‐C) and digestate solids biochar (DS‐C) were bio‐acidified (BA) by lactic acid fermentation with organic waste. The untreated, SA‐treated, BA biochars, and biochars co‐applied with a NI (3,4‐dimethylpyrazolephosphate) were tested in a pot experiment with maize.ResultsThe fermentation reduced the pH of the organic waste biochar mixtures to <4.3 and increased water‐extractable P (WEP) to 30% of total P. The untreated biochars had a mineral fertilizer replacement value of >50% and SA increased replacement values to ≈100%. The application of NI did not affect rhizosphere pH or P uptake. The BA MB‐C increased soil solution P concentration, but P uptake did not significantly increase. The application of the BA DS‐C raised soil pH and reduced plant P uptake and biomass.ConclusionThe untreated biochars showed considerable P fertilizer effectiveness, suggesting that acidification may not always be necessary. Rhizosphere acidification and the bio‐acidification of biochars were not effective in further increasing P uptake, despite higher levels of WEP.
提高生物炭中磷的可用性:硫酸处理与生物酸化方法的比较
背景众所周知,使用硫酸(SA)酸化生物炭可提高其磷(P)肥料价值。通过乳酸共同发酵降低生物炭的 pH 值,或在生物炭中加入硝化抑制剂 (NI) 以降低根瘤菌层的 pH 值,这些生物方法可能是硫酸的替代方法。本研究的目的是在盆栽实验中评估两种生物炭提高植物钾利用率的方法,并将它们与 SA 处理过的生物炭(作为参考)进行比较。结果发酵将有机废物生物炭混合物的 pH 值降至 4.3,并将水提取磷(WEP)提高到总磷量的 30%。未经处理的生物炭的矿物肥料替代值为 50%,而 SA 将替代值提高到≈100%。施用 NI 不会影响根瘤层的 pH 值或钾吸收。BA MB-C 增加了土壤溶液中的钾浓度,但钾吸收量没有显著增加。施用 BA DS-C 提高了土壤 pH 值,减少了植物对 P 的吸收和生物量。根瘤层酸化和生物酵素的生物酸化在进一步提高钾吸收方面并不有效,尽管WEP的水平较高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.70
自引率
8.00%
发文量
90
审稿时长
8-16 weeks
期刊介绍: Established in 1922, the Journal of Plant Nutrition and Soil Science (JPNSS) is an international peer-reviewed journal devoted to cover the entire spectrum of plant nutrition and soil science from different scale units, e.g. agroecosystem to natural systems. With its wide scope and focus on soil-plant interactions, JPNSS is one of the leading journals on this topic. Articles in JPNSS include reviews, high-standard original papers, and short communications and represent challenging research of international significance. The Journal of Plant Nutrition and Soil Science is one of the world’s oldest journals. You can trust in a peer-reviewed journal that has been established in the plant and soil science community for almost 100 years. Journal of Plant Nutrition and Soil Science (ISSN 1436-8730) is published in six volumes per year, by the German Societies of Plant Nutrition (DGP) and Soil Science (DBG). Furthermore, the Journal of Plant Nutrition and Soil Science (JPNSS) is a Cooperating Journal of the International Union of Soil Science (IUSS). The journal is produced by Wiley-VCH. Topical Divisions of the Journal of Plant Nutrition and Soil Science that are receiving increasing attention are: JPNSS – Topical Divisions Special timely focus in interdisciplinarity: - sustainability & critical zone science. Soil-Plant Interactions: - rhizosphere science & soil ecology - pollutant cycling & plant-soil protection - land use & climate change. Soil Science: - soil chemistry & soil physics - soil biology & biogeochemistry - soil genesis & mineralogy. Plant Nutrition: - plant nutritional physiology - nutrient dynamics & soil fertility - ecophysiological aspects of plant nutrition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信