Lyapunov exponents and shear-induced chaos for a Hopf bifurcation with additive noise

IF 1.5 1区 数学 Q2 STATISTICS & PROBABILITY
Peter H. Baxendale
{"title":"Lyapunov exponents and shear-induced chaos for a Hopf bifurcation with additive noise","authors":"Peter H. Baxendale","doi":"10.1007/s00440-024-01301-4","DOIUrl":null,"url":null,"abstract":"<p>This paper considers the effect of additive white noise on the normal form for the supercritical Hopf bifurcation in 2 dimensions. The main results involve the asymptotic behavior of the top Lyapunov exponent <span>\\(\\lambda \\)</span> associated with this random dynamical system as one or more of the parameters in the system tend to 0 or <span>\\(\\infty \\)</span>. This enables the construction of a bifurcation diagram in parameter space showing stable regions where <span>\\(\\lambda &lt;0\\)</span> (implying synchronization) and unstable regions where <span>\\(\\lambda &gt; 0\\)</span> (implying chaotic behavior). The value of <span>\\(\\lambda \\)</span> depends strongly on the shearing effect of the twist factor <i>b</i>/<i>a</i> of the deterministic Hopf bifurcation. If <i>b</i>/<i>a</i> is sufficiently small then <span>\\(\\lambda &lt;0\\)</span> regardless of all the other parameters in the system. But when all the parameters except <i>b</i> are fixed then <span>\\(\\lambda \\)</span> grows like a positive multiple of <span>\\(b^{2/3}\\)</span> as <span>\\(b \\rightarrow \\infty \\)</span>.\n</p>","PeriodicalId":20527,"journal":{"name":"Probability Theory and Related Fields","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Theory and Related Fields","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00440-024-01301-4","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper considers the effect of additive white noise on the normal form for the supercritical Hopf bifurcation in 2 dimensions. The main results involve the asymptotic behavior of the top Lyapunov exponent \(\lambda \) associated with this random dynamical system as one or more of the parameters in the system tend to 0 or \(\infty \). This enables the construction of a bifurcation diagram in parameter space showing stable regions where \(\lambda <0\) (implying synchronization) and unstable regions where \(\lambda > 0\) (implying chaotic behavior). The value of \(\lambda \) depends strongly on the shearing effect of the twist factor b/a of the deterministic Hopf bifurcation. If b/a is sufficiently small then \(\lambda <0\) regardless of all the other parameters in the system. But when all the parameters except b are fixed then \(\lambda \) grows like a positive multiple of \(b^{2/3}\) as \(b \rightarrow \infty \).

Abstract Image

带加法噪声的霍普夫分岔的李亚普诺夫指数和剪切诱导混沌
本文研究了加性白噪声对二维超临界霍普夫分岔法线形式的影响。主要结果涉及当系统中的一个或多个参数趋向于0或\(\infty \)时,与该随机动力学系统相关的顶部Lyapunov指数\(\lambda \)的渐近行为。这样就可以在参数空间中构建一个分岔图,显示\(\lambda <0\)的稳定区域(意味着同步)和\(\lambda >0\)的不稳定区域(意味着混沌行为)。\(\lambda \)的值在很大程度上取决于确定性霍普夫分岔的扭转因子b/a的剪切效应。如果b/a足够小,那么\(\lambda <0\)与系统中的所有其他参数无关。但是当除了b以外的所有参数都固定时,\(\lambda \)就会随着\(b \rightarrow \infty \)的增长而像\(b^{2/3}\)的正倍数一样增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Probability Theory and Related Fields
Probability Theory and Related Fields 数学-统计学与概率论
CiteScore
3.70
自引率
5.00%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Probability Theory and Related Fields publishes research papers in modern probability theory and its various fields of application. Thus, subjects of interest include: mathematical statistical physics, mathematical statistics, mathematical biology, theoretical computer science, and applications of probability theory to other areas of mathematics such as combinatorics, analysis, ergodic theory and geometry. Survey papers on emerging areas of importance may be considered for publication. The main languages of publication are English, French and German.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信