Gábor Bacsó, Balázs Patkós, Zsolt Tuza, Máté Vizer
{"title":"The Robust Chromatic Number of Graphs","authors":"Gábor Bacsó, Balázs Patkós, Zsolt Tuza, Máté Vizer","doi":"10.1007/s00373-024-02817-1","DOIUrl":null,"url":null,"abstract":"<p>A 1-removed subgraph <span>\\(G_f\\)</span> of a graph <span>\\(G=(V,E)\\)</span> is obtained by </p><dl><dt style=\"min-width:50px;\"><dfn>(i):</dfn></dt><dd>\n<p>selecting at most one edge <i>f</i>(<i>v</i>) for each vertex <span>\\(v\\in V\\)</span>, such that <span>\\(v\\in f(v)\\in E\\)</span> (the mapping <span>\\(f:V\\rightarrow E \\cup \\{\\varnothing \\}\\)</span> is allowed to be non-injective), and</p>\n</dd><dt style=\"min-width:50px;\"><dfn>(ii):</dfn></dt><dd>\n<p>deleting all the selected edges <i>f</i>(<i>v</i>) from the edge set <i>E</i> of <i>G</i>.</p>\n</dd></dl><p> Proper vertex colorings of 1-removed subgraphs proved to be a useful tool for earlier research on some Turán-type problems. In this paper, we introduce a systematic investigation of the graph invariant 1-robust chromatic number, denoted as <span>\\(\\chi _1(G)\\)</span>. This invariant is defined as the minimum chromatic number <span>\\(\\chi (G_f)\\)</span> among all 1-removed subgraphs <span>\\(G_f\\)</span> of <i>G</i>. We also examine other standard graph invariants in a similar manner.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02817-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
A 1-removed subgraph \(G_f\) of a graph \(G=(V,E)\) is obtained by
(i):
selecting at most one edge f(v) for each vertex \(v\in V\), such that \(v\in f(v)\in E\) (the mapping \(f:V\rightarrow E \cup \{\varnothing \}\) is allowed to be non-injective), and
(ii):
deleting all the selected edges f(v) from the edge set E of G.
Proper vertex colorings of 1-removed subgraphs proved to be a useful tool for earlier research on some Turán-type problems. In this paper, we introduce a systematic investigation of the graph invariant 1-robust chromatic number, denoted as \(\chi _1(G)\). This invariant is defined as the minimum chromatic number \(\chi (G_f)\) among all 1-removed subgraphs \(G_f\) of G. We also examine other standard graph invariants in a similar manner.
期刊介绍:
Graphs and Combinatorics is an international journal devoted to research concerning all aspects of combinatorial mathematics. In addition to original research papers, the journal also features survey articles from authors invited by the editorial board.