Ye Tian, Xudong Chen, Xin Shi, Bin Li, Yingjie Ning
{"title":"Visualization of Acoustic Emission Monitoring of Damage Evolution of Reinforced Concrete Beams under Bending","authors":"Ye Tian, Xudong Chen, Xin Shi, Bin Li, Yingjie Ning","doi":"10.1134/S1061830923601307","DOIUrl":null,"url":null,"abstract":"<p>Reinforced concrete (RC) structures combine steel and concrete to harness their respective advantages, making them a staple in contemporary architecture. With the aging of civil engineering structures, structural health monitoring grows increasingly critical. In this context, acoustic emission technology (AE) emerges as an effective nondestructive testing method for assessing the structural damage status. Building on this foundation, the AE technology was utilized to monitor the crack growth in the RC beam under the four-point bending test. Furthermore, a visual analysis method to assess the internal damage of the RC beam, based on the spatial <i>b</i> value of the AE, was introduced. This method integrates the spatial <i>b</i> value and the AE event density distributions to develop the <i>T</i> value. The results indicate that as the stirrup ratio decreases, the bearing capacity of RC beams increases; however, their ductility experiences a significant reduction, and the failure mode undergoes a transformation. Throughout each failure stage of RC beams, the AE ringing number and energy exhibit unique and easily distinguishable characteristics of change. Additionally, RA-AF correlation analysis can be applied to delve deeper into the analysis of the RC beams’ failure modes. Utilizing the spatial <i>b</i> value and <i>T</i> value facilitates the identification of damage locations within the RC beam, thereby offering a practical and feasible approach for structural damage analysis.</p>","PeriodicalId":764,"journal":{"name":"Russian Journal of Nondestructive Testing","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Nondestructive Testing","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1061830923601307","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
Reinforced concrete (RC) structures combine steel and concrete to harness their respective advantages, making them a staple in contemporary architecture. With the aging of civil engineering structures, structural health monitoring grows increasingly critical. In this context, acoustic emission technology (AE) emerges as an effective nondestructive testing method for assessing the structural damage status. Building on this foundation, the AE technology was utilized to monitor the crack growth in the RC beam under the four-point bending test. Furthermore, a visual analysis method to assess the internal damage of the RC beam, based on the spatial b value of the AE, was introduced. This method integrates the spatial b value and the AE event density distributions to develop the T value. The results indicate that as the stirrup ratio decreases, the bearing capacity of RC beams increases; however, their ductility experiences a significant reduction, and the failure mode undergoes a transformation. Throughout each failure stage of RC beams, the AE ringing number and energy exhibit unique and easily distinguishable characteristics of change. Additionally, RA-AF correlation analysis can be applied to delve deeper into the analysis of the RC beams’ failure modes. Utilizing the spatial b value and T value facilitates the identification of damage locations within the RC beam, thereby offering a practical and feasible approach for structural damage analysis.
期刊介绍:
Russian Journal of Nondestructive Testing, a translation of Defectoskopiya, is a publication of the Russian Academy of Sciences. This publication offers current Russian research on the theory and technology of nondestructive testing of materials and components. It describes laboratory and industrial investigations of devices and instrumentation and provides reviews of new equipment developed for series manufacture. Articles cover all physical methods of nondestructive testing, including magnetic and electrical; ultrasonic; X-ray and Y-ray; capillary; liquid (color luminescence), and radio (for materials of low conductivity).