Physiological and Genomic Elucidation of Cold-Resilient Rhizobacteria Reveals Plant Growth Promotion by Siderophore Optimization and Enhanced Biocontrol Potential Against Fungal Pathogens

IF 3.9 3区 生物学 Q1 PLANT SCIENCES
Pallavi Sharma, Girija Kaushal, Shruti Sinai Borker, Ayush Lepcha, Anil Kumar, Rakshak Kumar
{"title":"Physiological and Genomic Elucidation of Cold-Resilient Rhizobacteria Reveals Plant Growth Promotion by Siderophore Optimization and Enhanced Biocontrol Potential Against Fungal Pathogens","authors":"Pallavi Sharma, Girija Kaushal, Shruti Sinai Borker, Ayush Lepcha, Anil Kumar, Rakshak Kumar","doi":"10.1007/s00344-024-11430-8","DOIUrl":null,"url":null,"abstract":"<p>Cold stress and fungal pathogens pose significant challenge to high-altitude agriculture, impeding plant growth and metabolism. Siderophore-producing plant growth-promoting (PGP) rhizobacteria offer a promising solution by enhancing iron uptake and engaging in pathogen biocontrol. The current research aims to investigate the potential of siderophore-producing psychrotrophic bacteria to manage fungal phytopathogens effectively for its possible application as a bio-inoculant. In our search for psychrotrophic PGP bacteria with biocontrol potential, we isolated 13 rhizobacterial morphotypes; among these, AMR01 showed excellent biofertilizer characteristics. Taxonomic analysis elucidated AMR01 as a potentially novel <i>Pseudomonas</i> species. At 10 °C, AMR01 produced 33.23% siderophore unit (PSU), increasing to 55.76 PSU through pH, NH<sub>4</sub>NO<sub>3</sub>, and iron concentration optimization. Furthermore, AMR01 exhibited other PGP attributes, including auxin and ammonia production (13.47 µg/ml and 25.08 mg/l), phosphate solubilization (295.1 µg/ml), nitrogen fixation, potassium solubilization, and hydrogen cyanide (HCN) production. Remarkably, AMR01 demonstrated biocontrol potential, inhibiting three phytopathogens. Seed bacterization with AMR01 enhanced the germination of fungus-infected seeds, as evidenced by increased root and shoot length, compared to uninoculated control, conferring protection against fungal infestation. Genome analysis identified genes involved in pyoverdine synthesis and PGP traits in AMR01. The biosynthetic gene cluster associated with siderophore, HCN, and NRPS further supported AMR01 as a potent biocontrol agent. This research underscores the capacity of a novel, <i>Pseudomonas</i> sp., to improve plant growth by aiding in nutrient uptake and protecting against phytopathogens. Physiological and genomic evidence supports the potential of AMR01 as a bio-inoculant for addressing fungal-induced diseases in crops grown in the Indian Himalayan region.</p>","PeriodicalId":16842,"journal":{"name":"Journal of Plant Growth Regulation","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Growth Regulation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00344-024-11430-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Cold stress and fungal pathogens pose significant challenge to high-altitude agriculture, impeding plant growth and metabolism. Siderophore-producing plant growth-promoting (PGP) rhizobacteria offer a promising solution by enhancing iron uptake and engaging in pathogen biocontrol. The current research aims to investigate the potential of siderophore-producing psychrotrophic bacteria to manage fungal phytopathogens effectively for its possible application as a bio-inoculant. In our search for psychrotrophic PGP bacteria with biocontrol potential, we isolated 13 rhizobacterial morphotypes; among these, AMR01 showed excellent biofertilizer characteristics. Taxonomic analysis elucidated AMR01 as a potentially novel Pseudomonas species. At 10 °C, AMR01 produced 33.23% siderophore unit (PSU), increasing to 55.76 PSU through pH, NH4NO3, and iron concentration optimization. Furthermore, AMR01 exhibited other PGP attributes, including auxin and ammonia production (13.47 µg/ml and 25.08 mg/l), phosphate solubilization (295.1 µg/ml), nitrogen fixation, potassium solubilization, and hydrogen cyanide (HCN) production. Remarkably, AMR01 demonstrated biocontrol potential, inhibiting three phytopathogens. Seed bacterization with AMR01 enhanced the germination of fungus-infected seeds, as evidenced by increased root and shoot length, compared to uninoculated control, conferring protection against fungal infestation. Genome analysis identified genes involved in pyoverdine synthesis and PGP traits in AMR01. The biosynthetic gene cluster associated with siderophore, HCN, and NRPS further supported AMR01 as a potent biocontrol agent. This research underscores the capacity of a novel, Pseudomonas sp., to improve plant growth by aiding in nutrient uptake and protecting against phytopathogens. Physiological and genomic evidence supports the potential of AMR01 as a bio-inoculant for addressing fungal-induced diseases in crops grown in the Indian Himalayan region.

Abstract Image

耐寒根瘤菌的生理学和基因组阐明揭示了苷酸优化对植物生长的促进作用以及针对真菌病原体的更强生物控制潜力
冷胁迫和真菌病原体对高海拔农业构成了巨大挑战,阻碍了植物的生长和新陈代谢。产生嗜苷铁元素的植物生长促进(PGP)根瘤菌通过提高铁吸收和参与病原体生物防治,提供了一种前景广阔的解决方案。目前的研究旨在调查产生嗜铁素的精神营养细菌有效控制真菌植物病原体的潜力,以便将其用作生物接种剂。在寻找具有生物防治潜力的精神营养型 PGP 细菌的过程中,我们分离了 13 种根瘤菌形态,其中 AMR01 表现出优异的生物肥料特性。分类分析表明,AMR01 可能是一种新型假单胞菌。在 10 °C 条件下,AMR01 可产生 33.23% 的苷元单位(PSU),通过优化 pH 值、NH4NO3 和铁浓度,PSU 可增至 55.76。此外,AMR01 还表现出其他 PGP 特性,包括产生辅素和氨气(13.47 微克/毫升和 25.08 毫克/升)、溶解磷酸盐(295.1 微克/毫升)、固氮、溶解钾和产生氰化氢(HCN)。值得注意的是,AMR01 具有生物防治潜力,可抑制三种植物病原体。与未接种的对照组相比,用 AMR01 对种子进行细菌培养可提高受真菌感染的种子的萌发率,根和芽的长度也有所增加,从而保护种子免受真菌侵染。基因组分析确定了参与 AMR01 中吡咯烷酮合成和 PGP 性状的基因。与苷元、HCN 和 NRPS 相关的生物合成基因簇进一步证明 AMR01 是一种有效的生物控制剂。这项研究强调了一种新型假单胞菌(Pseudomonas sp.)通过帮助吸收养分和抵御植物病原体来改善植物生长的能力。生理学和基因组学证据支持 AMR01 作为生物接种剂解决印度喜马拉雅地区农作物真菌引起的疾病的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.40
自引率
6.20%
发文量
312
审稿时长
1.8 months
期刊介绍: The Journal of Plant Growth Regulation is an international publication featuring original articles on all aspects of plant growth and development. We welcome manuscripts reporting question-based research on various aspects of plant growth and development using hormonal, physiological, environmental, genetic, biophysical, developmental and/or molecular approaches. The journal also publishes timely reviews on highly relevant areas and/or studies in plant growth and development, including interdisciplinary work with an emphasis on plant growth, plant hormones and plant pathology or abiotic stress. In addition, the journal features occasional thematic issues with special guest editors, as well as brief communications describing novel techniques and meeting reports. The journal is unlikely to accept manuscripts that are purely descriptive in nature or reports work with simple tissue culture without attempting to investigate the underlying mechanisms of plant growth regulation, those that focus exclusively on microbial communities, or deal with the (elicitation by plant hormones of) synthesis of secondary metabolites.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信