{"title":"Transcriptome Analysis Revealed that Oxalic Acid in Exogenous Licorice Root Exudates Can Stimulate the Phenylpropane Metabolic Pathway","authors":"Qiaoli Ma, Xinghua Liang","doi":"10.1007/s00344-024-11385-w","DOIUrl":null,"url":null,"abstract":"<p>Licorice roots can release low-molecular-weight oxalic acid (OA). However, the allelopathic effects of OA on licorice are unknown. This study presents an investigation of the effects of exogenous OA treatment on licorice roots through transcriptomic and physiological analyses. Transcriptomic analysis demonstrated that following OA treatment, differentially expressed genes (DEGs) were primarily involved in the phenylpropanoid metabolism pathway. At 6 h, the expression levels of genes associated with this pathway, such as <i>PAL</i>, <i>CHS</i>, <i>POD</i>, <i>cellulase</i>, <i>CPY</i>, <i>MYB</i>, and <i>bHLH</i>, were upregulated. The metabolism of related metabolites, such as flavonoids and lignin, also increased. These findings suggest that the phenylpropanoid metabolism pathway may play a significant role in the response to OA treatment. In addition, the activities of GST, CAT, and POD markedly increased, whereas the content of H<sub>2</sub>O<sub>2</sub> gradually decreased, indicating that OA can activate the antioxidant protective capabilities of licorice roots. These findings suggest that OA may enhance the antioxidant defense of licorice root, as well as the effectiveness of its flavonoid constituents (to a certain degree). Our findings provide valuable theoretical insight into the allelopathic effects of licorice roots.</p>","PeriodicalId":16842,"journal":{"name":"Journal of Plant Growth Regulation","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Growth Regulation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00344-024-11385-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Licorice roots can release low-molecular-weight oxalic acid (OA). However, the allelopathic effects of OA on licorice are unknown. This study presents an investigation of the effects of exogenous OA treatment on licorice roots through transcriptomic and physiological analyses. Transcriptomic analysis demonstrated that following OA treatment, differentially expressed genes (DEGs) were primarily involved in the phenylpropanoid metabolism pathway. At 6 h, the expression levels of genes associated with this pathway, such as PAL, CHS, POD, cellulase, CPY, MYB, and bHLH, were upregulated. The metabolism of related metabolites, such as flavonoids and lignin, also increased. These findings suggest that the phenylpropanoid metabolism pathway may play a significant role in the response to OA treatment. In addition, the activities of GST, CAT, and POD markedly increased, whereas the content of H2O2 gradually decreased, indicating that OA can activate the antioxidant protective capabilities of licorice roots. These findings suggest that OA may enhance the antioxidant defense of licorice root, as well as the effectiveness of its flavonoid constituents (to a certain degree). Our findings provide valuable theoretical insight into the allelopathic effects of licorice roots.
期刊介绍:
The Journal of Plant Growth Regulation is an international publication featuring original articles on all aspects of plant growth and development. We welcome manuscripts reporting question-based research on various aspects of plant growth and development using hormonal, physiological, environmental, genetic, biophysical, developmental and/or molecular approaches.
The journal also publishes timely reviews on highly relevant areas and/or studies in plant growth and development, including interdisciplinary work with an emphasis on plant growth, plant hormones and plant pathology or abiotic stress.
In addition, the journal features occasional thematic issues with special guest editors, as well as brief communications describing novel techniques and meeting reports.
The journal is unlikely to accept manuscripts that are purely descriptive in nature or reports work with simple tissue culture without attempting to investigate the underlying mechanisms of plant growth regulation, those that focus exclusively on microbial communities, or deal with the (elicitation by plant hormones of) synthesis of secondary metabolites.