{"title":"An effective subgradient algorithm via Mifflin’s line search for nonsmooth nonconvex multiobjective optimization","authors":"","doi":"10.1016/j.ejor.2024.07.019","DOIUrl":null,"url":null,"abstract":"<div><p>We propose a descent subgradient algorithm for unconstrained nonsmooth nonconvex multiobjective optimization problems. To find a descent direction, we present an iterative process that efficiently approximates the <span><math><mi>ɛ</mi></math></span>-subdifferential of each objective function. To this end, we develop a new variant of Mifflin’s line search in which the subgradients are arbitrary and its finite convergence is proved under a semismooth assumption. To reduce the number of subgradient evaluations, we employ a backtracking line search that identifies the objectives requiring an improvement in the current approximation of the <span><math><mi>ɛ</mi></math></span>-subdifferential. Meanwhile, for the remaining objectives, new subgradients are not computed. Unlike bundle-type methods, the proposed approach can handle nonconvexity without the need for algorithmic adjustments. Moreover, the quadratic subproblems have a simple structure, and hence the method is easy to implement. We analyze the global convergence of the proposed method and prove that any accumulation point of the generated sequence satisfies a necessary Pareto optimality condition. Furthermore, our convergence analysis addresses a theoretical challenge in a recently developed subgradient method. Through numerical experiments, we observe the practical capability of the proposed method and evaluate its efficiency when applied to a diverse range of nonsmooth test problems.</p></div>","PeriodicalId":55161,"journal":{"name":"European Journal of Operational Research","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Operational Research","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377221724005605","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a descent subgradient algorithm for unconstrained nonsmooth nonconvex multiobjective optimization problems. To find a descent direction, we present an iterative process that efficiently approximates the -subdifferential of each objective function. To this end, we develop a new variant of Mifflin’s line search in which the subgradients are arbitrary and its finite convergence is proved under a semismooth assumption. To reduce the number of subgradient evaluations, we employ a backtracking line search that identifies the objectives requiring an improvement in the current approximation of the -subdifferential. Meanwhile, for the remaining objectives, new subgradients are not computed. Unlike bundle-type methods, the proposed approach can handle nonconvexity without the need for algorithmic adjustments. Moreover, the quadratic subproblems have a simple structure, and hence the method is easy to implement. We analyze the global convergence of the proposed method and prove that any accumulation point of the generated sequence satisfies a necessary Pareto optimality condition. Furthermore, our convergence analysis addresses a theoretical challenge in a recently developed subgradient method. Through numerical experiments, we observe the practical capability of the proposed method and evaluate its efficiency when applied to a diverse range of nonsmooth test problems.
期刊介绍:
The European Journal of Operational Research (EJOR) publishes high quality, original papers that contribute to the methodology of operational research (OR) and to the practice of decision making.