Robust ordinal regression for subsets comparisons with interactions

IF 6 2区 管理学 Q1 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
{"title":"Robust ordinal regression for subsets comparisons with interactions","authors":"","doi":"10.1016/j.ejor.2024.07.021","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is devoted to a robust ordinal method for learning the preferences of a decision maker between subsets. The decision model, derived from Fishburn and LaValle (1996) and whose parameters we learn, is general enough to be compatible with any strict weak order on subsets, thanks to the consideration of possible interactions between elements. Moreover, we accept not to predict some preferences if the available preference data are not compatible with a reliable prediction. A predicted preference is considered reliable if all the simplest models (Occam’s razor) explaining the preference data agree on it. Following the robust ordinal regression methodology, our predictions are based on an uncertainty set encompassing the possible values of the model parameters. We define a new ordinal dominance relation between subsets and design a procedure to determine whether this dominance relation holds. Numerical tests are provided on synthetic and real-world data to evaluate the richness and reliability of the preference predictions made.</p></div>","PeriodicalId":55161,"journal":{"name":"European Journal of Operational Research","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0377221724005629/pdfft?md5=4ba6c81c7300adfc9f6ebbc61b982ef7&pid=1-s2.0-S0377221724005629-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Operational Research","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377221724005629","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is devoted to a robust ordinal method for learning the preferences of a decision maker between subsets. The decision model, derived from Fishburn and LaValle (1996) and whose parameters we learn, is general enough to be compatible with any strict weak order on subsets, thanks to the consideration of possible interactions between elements. Moreover, we accept not to predict some preferences if the available preference data are not compatible with a reliable prediction. A predicted preference is considered reliable if all the simplest models (Occam’s razor) explaining the preference data agree on it. Following the robust ordinal regression methodology, our predictions are based on an uncertainty set encompassing the possible values of the model parameters. We define a new ordinal dominance relation between subsets and design a procedure to determine whether this dominance relation holds. Numerical tests are provided on synthetic and real-world data to evaluate the richness and reliability of the preference predictions made.

用于有交互作用的子集比较的稳健序数回归
本文致力于研究一种稳健的序数法,用于学习决策者对子集的偏好。该决策模型源自 Fishburn 和 LaValle (1996),我们学习其参数,由于考虑到了元素之间可能存在的相互作用,该模型具有足够的通用性,可与子集上的任何严格弱序相兼容。此外,如果可用的偏好数据与可靠的预测不兼容,我们也可以不预测某些偏好。如果所有解释偏好数据的最简单模型(奥卡姆剃刀)都同意预测的偏好,那么预测的偏好就被认为是可靠的。按照稳健序数回归方法,我们的预测基于不确定性集,其中包括模型参数的可能值。我们在子集之间定义了一种新的序数支配关系,并设计了一种程序来确定这种支配关系是否成立。我们对合成数据和实际数据进行了数值测试,以评估所做偏好预测的丰富性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Journal of Operational Research
European Journal of Operational Research 管理科学-运筹学与管理科学
CiteScore
11.90
自引率
9.40%
发文量
786
审稿时长
8.2 months
期刊介绍: The European Journal of Operational Research (EJOR) publishes high quality, original papers that contribute to the methodology of operational research (OR) and to the practice of decision making.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信