Neural network interatomic potentials for open surface nano-mechanics applications

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"Neural network interatomic potentials for open surface nano-mechanics applications","authors":"","doi":"10.1016/j.actamat.2024.120200","DOIUrl":null,"url":null,"abstract":"<div><p>Material characterization in nano-mechanical tests may provide information on the potential heterogeneity of mechanical properties. Here, we develop a robust neural-network interatomic potential (NNIP), and we provide a test for the example of molecular dynamics (MD) nanoindentation, and the case of body-centered cubic crystalline molybdenum (Mo). We employ a similarity measurement protocol, using standard local environment descriptors, to select ab initio configurations for the training dataset that capture the behavior of the indented sample. We find that it is critical to include generalized stacking fault (GSF) configurations, featuring a dumbbell self-interstitial on the surface, to capture dislocation cores, and also high-temperature configurations with frozen atom layers for the indenter tip contact. We develop a NNIP with distinct dislocation nucleation mechanisms, realistic generalized stacking fault energy (GSFE) curves, and an informative energy landscape for the atoms on the sample surface during nanoindentation. We compare our NNIP results with nanoindentation simulations, performed with three existing potentials – an embedded atom method (EAM) potential, a gaussian approximation potential (GAP), and a tabulated GAP (tabGAP) potential – that predict different dislocation nucleation mechanisms, and display the absence of essential information on the shear stress at the sample surface in the elastic region. Finally, we compared our NNIP nanoindentation results with experiments, showing reliable predictions for reduced Young’s modulus and observable slip traces.</p></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1359645424005500/pdfft?md5=ffb4f4e563afe51377677a7450d4d644&pid=1-s2.0-S1359645424005500-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645424005500","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Material characterization in nano-mechanical tests may provide information on the potential heterogeneity of mechanical properties. Here, we develop a robust neural-network interatomic potential (NNIP), and we provide a test for the example of molecular dynamics (MD) nanoindentation, and the case of body-centered cubic crystalline molybdenum (Mo). We employ a similarity measurement protocol, using standard local environment descriptors, to select ab initio configurations for the training dataset that capture the behavior of the indented sample. We find that it is critical to include generalized stacking fault (GSF) configurations, featuring a dumbbell self-interstitial on the surface, to capture dislocation cores, and also high-temperature configurations with frozen atom layers for the indenter tip contact. We develop a NNIP with distinct dislocation nucleation mechanisms, realistic generalized stacking fault energy (GSFE) curves, and an informative energy landscape for the atoms on the sample surface during nanoindentation. We compare our NNIP results with nanoindentation simulations, performed with three existing potentials – an embedded atom method (EAM) potential, a gaussian approximation potential (GAP), and a tabulated GAP (tabGAP) potential – that predict different dislocation nucleation mechanisms, and display the absence of essential information on the shear stress at the sample surface in the elastic region. Finally, we compared our NNIP nanoindentation results with experiments, showing reliable predictions for reduced Young’s modulus and observable slip traces.

Abstract Image

用于开放表面纳米力学应用的神经网络原子间位势
纳米力学测试中的材料表征可提供有关力学性能潜在异质性的信息。在此,我们开发了一种稳健的神经网络原子间势(NNIP),并以分子动力学(MD)纳米压痕和体心立方结晶钼(Mo)为例进行了测试。我们采用相似性测量协议,使用标准的局部环境描述符,为训练数据集选择能够捕捉到压痕样品行为的 ab initio 配置。我们发现,关键是要包括广义堆积断层(GSF)构型(其特点是表面上的哑铃状自间隙)来捕捉位错核心,以及带有冷冻原子层的高温构型来捕捉压头尖端接触。我们开发的 NNIP 具有独特的位错成核机制、逼真的广义堆积断层能 (GSFE) 曲线以及纳米压痕过程中样品表面原子的信息能谱。我们将 NNIP 结果与纳米压痕模拟结果进行了比较,纳米压痕模拟是用三种现有电位(嵌入原子法(EAM)电位、高斯近似电位(GAP)和制表 GAP(tabGAP)电位)进行的,这些电位预测了不同的位错成核机制,并显示在弹性区域样品表面缺乏剪应力的基本信息。最后,我们将 NNIP 纳米压痕结果与实验结果进行了比较,结果表明,对降低的杨氏模量和可观察到的滑移痕迹的预测是可靠的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信