Top-K Pairwise Ranking: Bridging the Gap Among Ranking-Based Measures for Multi-label Classification

IF 11.6 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Zitai Wang, Qianqian Xu, Zhiyong Yang, Peisong Wen, Yuan He, Xiaochun Cao, Qingming Huang
{"title":"Top-K Pairwise Ranking: Bridging the Gap Among Ranking-Based Measures for Multi-label Classification","authors":"Zitai Wang, Qianqian Xu, Zhiyong Yang, Peisong Wen, Yuan He, Xiaochun Cao, Qingming Huang","doi":"10.1007/s11263-024-02157-w","DOIUrl":null,"url":null,"abstract":"<p>Multi-label ranking, which returns multiple top-ranked labels for each instance, has a wide range of applications for visual tasks. Due to its complicated setting, prior arts have proposed various measures to evaluate model performances. However, both theoretical analysis and empirical observations show that a model might perform inconsistently on different measures. To bridge this gap, this paper proposes a novel measure named Top-K Pairwise Ranking (TKPR), and a series of analyses show that TKPR is compatible with existing ranking-based measures. In light of this, we further establish an empirical surrogate risk minimization framework for TKPR. On one hand, the proposed framework enjoys convex surrogate losses with the theoretical support of Fisher consistency. On the other hand, we establish a sharp generalization bound for the proposed framework based on a novel technique named data-dependent contraction. Finally, empirical results on benchmark datasets validate the effectiveness of the proposed framework.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"52 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-024-02157-w","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-label ranking, which returns multiple top-ranked labels for each instance, has a wide range of applications for visual tasks. Due to its complicated setting, prior arts have proposed various measures to evaluate model performances. However, both theoretical analysis and empirical observations show that a model might perform inconsistently on different measures. To bridge this gap, this paper proposes a novel measure named Top-K Pairwise Ranking (TKPR), and a series of analyses show that TKPR is compatible with existing ranking-based measures. In light of this, we further establish an empirical surrogate risk minimization framework for TKPR. On one hand, the proposed framework enjoys convex surrogate losses with the theoretical support of Fisher consistency. On the other hand, we establish a sharp generalization bound for the proposed framework based on a novel technique named data-dependent contraction. Finally, empirical results on benchmark datasets validate the effectiveness of the proposed framework.

Abstract Image

Top-K 配对排序:弥合基于排序的多标签分类方法之间的差距
多标签排名是指为每个实例返回多个排名靠前的标签,在视觉任务中有着广泛的应用。由于其设置复杂,先前的研究提出了各种评估模型性能的方法。然而,理论分析和经验观察都表明,一个模型在不同的衡量标准上可能表现不一致。为了弥补这一缺陷,本文提出了一种名为 "Top-K Pairwise Ranking"(TKPR)的新测量方法,一系列分析表明 TKPR 与现有的基于排名的测量方法是兼容的。有鉴于此,我们进一步为 TKPR 建立了一个经验代用风险最小化框架。一方面,所提出的框架在费雪一致性的理论支持下享有凸代理损失。另一方面,我们基于一种名为 "数据依赖收缩 "的新技术,为所提出的框架建立了一个尖锐的泛化边界。最后,基准数据集上的经验结果验证了所提框架的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Computer Vision
International Journal of Computer Vision 工程技术-计算机:人工智能
CiteScore
29.80
自引率
2.10%
发文量
163
审稿时长
6 months
期刊介绍: The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs. Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision. Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community. Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas. In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives. The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research. Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信