Analysis of Langevin Monte Carlo from Poincaré to Log-Sobolev

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Sinho Chewi, Murat A. Erdogdu, Mufan Li, Ruoqi Shen, Matthew S. Zhang
{"title":"Analysis of Langevin Monte Carlo from Poincaré to Log-Sobolev","authors":"Sinho Chewi, Murat A. Erdogdu, Mufan Li, Ruoqi Shen, Matthew S. Zhang","doi":"10.1007/s10208-024-09667-6","DOIUrl":null,"url":null,"abstract":"<p>Classically, the continuous-time Langevin diffusion converges exponentially fast to its stationary distribution <span>\\(\\pi \\)</span> under the sole assumption that <span>\\(\\pi \\)</span> satisfies a Poincaré inequality. Using this fact to provide guarantees for the discrete-time Langevin Monte Carlo (LMC) algorithm, however, is considerably more challenging due to the need for working with chi-squared or Rényi divergences, and prior works have largely focused on strongly log-concave targets. In this work, we provide the first convergence guarantees for LMC assuming that <span>\\(\\pi \\)</span> satisfies either a Latała–Oleszkiewicz or modified log-Sobolev inequality, which interpolates between the Poincaré and log-Sobolev settings. Unlike prior works, our results allow for weak smoothness and do not require convexity or dissipativity conditions.\n</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10208-024-09667-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Classically, the continuous-time Langevin diffusion converges exponentially fast to its stationary distribution \(\pi \) under the sole assumption that \(\pi \) satisfies a Poincaré inequality. Using this fact to provide guarantees for the discrete-time Langevin Monte Carlo (LMC) algorithm, however, is considerably more challenging due to the need for working with chi-squared or Rényi divergences, and prior works have largely focused on strongly log-concave targets. In this work, we provide the first convergence guarantees for LMC assuming that \(\pi \) satisfies either a Latała–Oleszkiewicz or modified log-Sobolev inequality, which interpolates between the Poincaré and log-Sobolev settings. Unlike prior works, our results allow for weak smoothness and do not require convexity or dissipativity conditions.

Abstract Image

从 Poincaré 到 Log-Sobolev 的 Langevin 蒙特卡洛分析
从经典上讲,在 \(\pi \) 满足Poincaré不等式的唯一假设下,连续时间朗之文扩散以指数级速度收敛到其静态分布 \(\pi \)。然而,利用这一事实为离散时间朗之文蒙特卡洛(LMC)算法提供保证要困难得多,因为需要处理秩方或雷尼发散,而且之前的工作主要集中在强对数凹目标上。在这项工作中,我们首次为 LMC 提供了收敛性保证,假设 \(\pi \) 满足拉塔瓦-奥列兹凯维奇不等式或修正的 log-Sobolev 不等式,它们在 Poincaré 和 log-Sobolev 设置之间进行插值。与之前的研究不同,我们的结果允许弱平稳性,并且不需要凸性或消散性条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信