Sinho Chewi, Murat A. Erdogdu, Mufan Li, Ruoqi Shen, Matthew S. Zhang
{"title":"Analysis of Langevin Monte Carlo from Poincaré to Log-Sobolev","authors":"Sinho Chewi, Murat A. Erdogdu, Mufan Li, Ruoqi Shen, Matthew S. Zhang","doi":"10.1007/s10208-024-09667-6","DOIUrl":null,"url":null,"abstract":"<p>Classically, the continuous-time Langevin diffusion converges exponentially fast to its stationary distribution <span>\\(\\pi \\)</span> under the sole assumption that <span>\\(\\pi \\)</span> satisfies a Poincaré inequality. Using this fact to provide guarantees for the discrete-time Langevin Monte Carlo (LMC) algorithm, however, is considerably more challenging due to the need for working with chi-squared or Rényi divergences, and prior works have largely focused on strongly log-concave targets. In this work, we provide the first convergence guarantees for LMC assuming that <span>\\(\\pi \\)</span> satisfies either a Latała–Oleszkiewicz or modified log-Sobolev inequality, which interpolates between the Poincaré and log-Sobolev settings. Unlike prior works, our results allow for weak smoothness and do not require convexity or dissipativity conditions.\n</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10208-024-09667-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Classically, the continuous-time Langevin diffusion converges exponentially fast to its stationary distribution \(\pi \) under the sole assumption that \(\pi \) satisfies a Poincaré inequality. Using this fact to provide guarantees for the discrete-time Langevin Monte Carlo (LMC) algorithm, however, is considerably more challenging due to the need for working with chi-squared or Rényi divergences, and prior works have largely focused on strongly log-concave targets. In this work, we provide the first convergence guarantees for LMC assuming that \(\pi \) satisfies either a Latała–Oleszkiewicz or modified log-Sobolev inequality, which interpolates between the Poincaré and log-Sobolev settings. Unlike prior works, our results allow for weak smoothness and do not require convexity or dissipativity conditions.