Investigation of the permutation and linear codes from the Welch APN function

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Tor Helleseth, Chunlei Li, Yongbo Xia
{"title":"Investigation of the permutation and linear codes from the Welch APN function","authors":"Tor Helleseth, Chunlei Li, Yongbo Xia","doi":"10.1007/s10623-024-01461-3","DOIUrl":null,"url":null,"abstract":"<p>Dobbertin in 1999 proved that the Welch power function <span>\\(x^{2^m+3}\\)</span> was almost perferct nonlinear (APN) over the finite field <span>\\(\\mathbb {F}_{2^{2m+1}}\\)</span>, where <i>m</i> is a positive integer. In his proof, Dobbertin showed that the APNness of <span>\\(x^{2^m+3}\\)</span> essentially relied on the bijectivity of the polynomial <span>\\(g(x)=x^{2^{m+1}+1}+x^3+x\\)</span> over <span>\\(\\mathbb {F}_{2^{2m+1}}\\)</span>. In this paper, we first determine the differential and Walsh spectra of the permutation polynomial <i>g</i>(<i>x</i>), revealing its favourable cryptograhphic properties. We then explore four families of binary linear codes related to the Welch APN power functions. For two cyclic codes among them, we propose algebraic decoding algorithms that significantly outperform existing methods in terms of decoding complexity.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10623-024-01461-3","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Dobbertin in 1999 proved that the Welch power function \(x^{2^m+3}\) was almost perferct nonlinear (APN) over the finite field \(\mathbb {F}_{2^{2m+1}}\), where m is a positive integer. In his proof, Dobbertin showed that the APNness of \(x^{2^m+3}\) essentially relied on the bijectivity of the polynomial \(g(x)=x^{2^{m+1}+1}+x^3+x\) over \(\mathbb {F}_{2^{2m+1}}\). In this paper, we first determine the differential and Walsh spectra of the permutation polynomial g(x), revealing its favourable cryptograhphic properties. We then explore four families of binary linear codes related to the Welch APN power functions. For two cyclic codes among them, we propose algebraic decoding algorithms that significantly outperform existing methods in terms of decoding complexity.

韦尔奇 APN 函数中的置换和线性编码研究
Dobbertin 在 1999 年证明了韦尔奇幂函数 \(x^{2^m+3}\)在有限域 \(\mathbb{F}_{2^{2m+1}}\)上几乎是非线性的(APN),其中 m 是正整数。在他的证明中,Dobbertin 证明了 \(x^{2^m+3}\) 的 APN 性本质上依赖于 \(\mathbb {F}_{2^{2m+1}} 上多项式 \(g(x)=x^{2^{m+1}+1}+x^3+x\) 的双射性。)在本文中,我们首先确定了置换多项式 g(x) 的微分和沃尔什谱,揭示了其有利的加密特性。然后,我们探讨了与韦尔奇 APN 幂函数相关的四个二进制线性编码系列。对于其中的两种循环码,我们提出了代数解码算法,在解码复杂度方面明显优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信