{"title":"Investigation of the permutation and linear codes from the Welch APN function","authors":"Tor Helleseth, Chunlei Li, Yongbo Xia","doi":"10.1007/s10623-024-01461-3","DOIUrl":null,"url":null,"abstract":"<p>Dobbertin in 1999 proved that the Welch power function <span>\\(x^{2^m+3}\\)</span> was almost perferct nonlinear (APN) over the finite field <span>\\(\\mathbb {F}_{2^{2m+1}}\\)</span>, where <i>m</i> is a positive integer. In his proof, Dobbertin showed that the APNness of <span>\\(x^{2^m+3}\\)</span> essentially relied on the bijectivity of the polynomial <span>\\(g(x)=x^{2^{m+1}+1}+x^3+x\\)</span> over <span>\\(\\mathbb {F}_{2^{2m+1}}\\)</span>. In this paper, we first determine the differential and Walsh spectra of the permutation polynomial <i>g</i>(<i>x</i>), revealing its favourable cryptograhphic properties. We then explore four families of binary linear codes related to the Welch APN power functions. For two cyclic codes among them, we propose algebraic decoding algorithms that significantly outperform existing methods in terms of decoding complexity.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10623-024-01461-3","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Dobbertin in 1999 proved that the Welch power function \(x^{2^m+3}\) was almost perferct nonlinear (APN) over the finite field \(\mathbb {F}_{2^{2m+1}}\), where m is a positive integer. In his proof, Dobbertin showed that the APNness of \(x^{2^m+3}\) essentially relied on the bijectivity of the polynomial \(g(x)=x^{2^{m+1}+1}+x^3+x\) over \(\mathbb {F}_{2^{2m+1}}\). In this paper, we first determine the differential and Walsh spectra of the permutation polynomial g(x), revealing its favourable cryptograhphic properties. We then explore four families of binary linear codes related to the Welch APN power functions. For two cyclic codes among them, we propose algebraic decoding algorithms that significantly outperform existing methods in terms of decoding complexity.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.