IL-33 stimulates the anticancer activities of eosinophils through extracellular vesicle-driven reprogramming of tumor cells.

IF 11.4 1区 医学 Q1 ONCOLOGY
Adriana Rosa Gambardella, Caterina Antonucci, Cristiana Zanetti, Francesco Noto, Sara Andreone, Davide Vacca, Valentina Pellerito, Chiara Sicignano, Giuseppe Parrottino, Valentina Tirelli, Antonella Tinari, Mario Falchi, Adele De Ninno, Luca Businaro, Stefania Loffredo, Gilda Varricchi, Claudio Tripodo, Claudia Afferni, Isabella Parolini, Fabrizio Mattei, Giovanna Schiavoni
{"title":"IL-33 stimulates the anticancer activities of eosinophils through extracellular vesicle-driven reprogramming of tumor cells.","authors":"Adriana Rosa Gambardella, Caterina Antonucci, Cristiana Zanetti, Francesco Noto, Sara Andreone, Davide Vacca, Valentina Pellerito, Chiara Sicignano, Giuseppe Parrottino, Valentina Tirelli, Antonella Tinari, Mario Falchi, Adele De Ninno, Luca Businaro, Stefania Loffredo, Gilda Varricchi, Claudio Tripodo, Claudia Afferni, Isabella Parolini, Fabrizio Mattei, Giovanna Schiavoni","doi":"10.1186/s13046-024-03129-1","DOIUrl":null,"url":null,"abstract":"<p><p>Immune cell-derived extracellular vesicles (EV) affect tumor progression and hold promise for therapeutic applications. Eosinophils are major effectors in Th2-related pathologies recently implied in cancer. Here, we evaluated the anti-tumor activities of eosinophil-derived EV following activation with the alarmin IL-33. We demonstrate that IL-33-activated mouse and human eosinophils produce higher quantities of EV with respect to eosinophils stimulated with IL-5. Following incorporation of EV from IL-33-activated eosinophils (Eo33-EV), but not EV from IL-5-treated eosinophils (Eo5-EV), mouse and human tumor cells increased the expression of cyclin-dependent kinase inhibitor (CDKI)-related genes resulting in cell cycle arrest in G0/G1, reduced proliferation and inhibited tumor spheroid formation. Moreover, tumor cells incorporating Eo33-EV acquired an epithelial-like phenotype characterized by E-Cadherin up-regulation, N-Cadherin downregulation, reduced cell elongation and migratory extent in vitro, and impaired capacity to metastasize to lungs when injected in syngeneic mice. RNA sequencing revealed distinct mRNA signatures in Eo33-EV and Eo5-EV with increased presence of tumor suppressor genes and enrichment in pathways related to epithelial phenotypes and negative regulation of cellular processes in Eo33-EV compared to Eo5-EV. Our studies underscore novel IL-33-stimulated anticancer activities of eosinophils through EV-mediated reprogramming of tumor cells opening perspectives on the use of eosinophil-derived EV in cancer therapy.</p>","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":"43 1","pages":"209"},"PeriodicalIF":11.4000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11282757/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Clinical Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13046-024-03129-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Immune cell-derived extracellular vesicles (EV) affect tumor progression and hold promise for therapeutic applications. Eosinophils are major effectors in Th2-related pathologies recently implied in cancer. Here, we evaluated the anti-tumor activities of eosinophil-derived EV following activation with the alarmin IL-33. We demonstrate that IL-33-activated mouse and human eosinophils produce higher quantities of EV with respect to eosinophils stimulated with IL-5. Following incorporation of EV from IL-33-activated eosinophils (Eo33-EV), but not EV from IL-5-treated eosinophils (Eo5-EV), mouse and human tumor cells increased the expression of cyclin-dependent kinase inhibitor (CDKI)-related genes resulting in cell cycle arrest in G0/G1, reduced proliferation and inhibited tumor spheroid formation. Moreover, tumor cells incorporating Eo33-EV acquired an epithelial-like phenotype characterized by E-Cadherin up-regulation, N-Cadherin downregulation, reduced cell elongation and migratory extent in vitro, and impaired capacity to metastasize to lungs when injected in syngeneic mice. RNA sequencing revealed distinct mRNA signatures in Eo33-EV and Eo5-EV with increased presence of tumor suppressor genes and enrichment in pathways related to epithelial phenotypes and negative regulation of cellular processes in Eo33-EV compared to Eo5-EV. Our studies underscore novel IL-33-stimulated anticancer activities of eosinophils through EV-mediated reprogramming of tumor cells opening perspectives on the use of eosinophil-derived EV in cancer therapy.

IL-33 通过细胞外囊泡驱动的肿瘤细胞重编程,刺激嗜酸性粒细胞的抗癌活性。
免疫细胞衍生的细胞外囊泡 (EV) 会影响肿瘤的发展,并有望用于治疗。嗜酸性粒细胞是 Th2 相关病症的主要效应因子,最近在癌症中也有所体现。在这里,我们评估了嗜酸性粒细胞衍生的EV在被警戒素IL-33激活后的抗肿瘤活性。我们证明,IL-33 激活的小鼠和人类嗜酸性粒细胞与 IL-5 刺激的嗜酸性粒细胞相比,能产生更多的 EV。小鼠和人类肿瘤细胞吸收了 IL-33 激活的嗜酸性粒细胞产生的 EV(Eo33-EV)而非 IL-5 处理的嗜酸性粒细胞产生的 EV(Eo5-EV)后,细胞周期依赖性激酶抑制剂(CDKI)相关基因的表达增加,导致细胞周期停滞在 G0/G1,增殖减少并抑制了肿瘤球体的形成。此外,含有Eo33-EV的肿瘤细胞获得了上皮样表型,其特征是E-Cadherin上调、N-Cadherin下调、体外细胞伸长和迁移程度降低,以及在注射给合成小鼠时向肺部转移的能力减弱。RNA测序显示,Eo33-EV和Eo5-EV中的mRNA特征不同,与Eo5-EV相比,Eo33-EV中肿瘤抑制基因增多,与上皮表型和细胞过程负调控相关的通路丰富。我们的研究强调了嗜酸性粒细胞通过EV介导的肿瘤细胞重编程而产生的新型IL-33刺激抗癌活性,为在癌症治疗中使用嗜酸性粒细胞衍生的EV开辟了前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
18.20
自引率
1.80%
发文量
333
审稿时长
1 months
期刊介绍: The Journal of Experimental & Clinical Cancer Research is an esteemed peer-reviewed publication that focuses on cancer research, encompassing everything from fundamental discoveries to practical applications. We welcome submissions that showcase groundbreaking advancements in the field of cancer research, especially those that bridge the gap between laboratory findings and clinical implementation. Our goal is to foster a deeper understanding of cancer, improve prevention and detection strategies, facilitate accurate diagnosis, and enhance treatment options. We are particularly interested in manuscripts that shed light on the mechanisms behind the development and progression of cancer, including metastasis. Additionally, we encourage submissions that explore molecular alterations or biomarkers that can help predict the efficacy of different treatments or identify drug resistance. Translational research related to targeted therapies, personalized medicine, tumor immunotherapy, and innovative approaches applicable to clinical investigations are also of great interest to us. We provide a platform for the dissemination of large-scale molecular characterizations of human tumors and encourage researchers to share their insights, discoveries, and methodologies with the wider scientific community. By publishing high-quality research articles, reviews, and commentaries, the Journal of Experimental & Clinical Cancer Research strives to contribute to the continuous improvement of cancer care and make a meaningful impact on patients' lives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信