Han Yang, Sicheng Zhou, Zexi Rao, Chen Zhao, Erjia Cui, Chetan Shenoy, Anne H Blaes, Nishitha Paidimukkala, Jinhua Wang, Jue Hou, Rui Zhang
{"title":"Multi-modality risk prediction of cardiovascular diseases for breast cancer cohort in the All of Us Research Program.","authors":"Han Yang, Sicheng Zhou, Zexi Rao, Chen Zhao, Erjia Cui, Chetan Shenoy, Anne H Blaes, Nishitha Paidimukkala, Jinhua Wang, Jue Hou, Rui Zhang","doi":"10.1093/jamia/ocae199","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study leverages the rich diversity of the All of Us Research Program (All of Us)'s dataset to devise a predictive model for cardiovascular disease (CVD) in breast cancer (BC) survivors. Central to this endeavor is the creation of a robust data integration pipeline that synthesizes electronic health records (EHRs), patient surveys, and genomic data, while upholding fairness across demographic variables.</p><p><strong>Materials and methods: </strong>We have developed a universal data wrangling pipeline to process and merge heterogeneous data sources of the All of Us dataset, address missingness and variance in data, and align disparate data modalities into a coherent framework for analysis. Utilizing a composite feature set including EHR, lifestyle, and social determinants of health (SDoH) data, we then employed Adaptive Lasso and Random Forest regression models to predict 6 CVD outcomes. The models were evaluated using the c-index and time-dependent Area Under the Receiver Operating Characteristic Curve over a 10-year period.</p><p><strong>Results: </strong>The Adaptive Lasso model showed consistent performance across most CVD outcomes, while the Random Forest model excelled particularly in predicting outcomes like transient ischemic attack when incorporating the full multi-model feature set. Feature importance analysis revealed age and previous coronary events as dominant predictors across CVD outcomes, with SDoH clustering labels highlighting the nuanced impact of social factors.</p><p><strong>Discussion: </strong>The development of both Cox-based predictive model and Random Forest Regression model represents the extensive application of the All of Us, in integrating EHR and patient surveys to enhance precision medicine. And the inclusion of SDoH clustering labels revealed the significant impact of sociobehavioral factors on patient outcomes, emphasizing the importance of comprehensive health determinants in predictive models. Despite these advancements, limitations include the exclusion of genetic data, broad categorization of CVD conditions, and the need for fairness analyses to ensure equitable model performance across diverse populations. Future work should refine clinical and social variable measurements, incorporate advanced imputation techniques, and explore additional predictive algorithms to enhance model precision and fairness.</p><p><strong>Conclusion: </strong>This study demonstrates the liability of the All of Us's diverse dataset in developing a multi-modality predictive model for CVD in BC survivors risk stratification in oncological survivorship. The data integration pipeline and subsequent predictive models establish a methodological foundation for future research into personalized healthcare.</p>","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":" ","pages":"2800-2810"},"PeriodicalIF":4.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631116/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Medical Informatics Association","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1093/jamia/ocae199","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: This study leverages the rich diversity of the All of Us Research Program (All of Us)'s dataset to devise a predictive model for cardiovascular disease (CVD) in breast cancer (BC) survivors. Central to this endeavor is the creation of a robust data integration pipeline that synthesizes electronic health records (EHRs), patient surveys, and genomic data, while upholding fairness across demographic variables.
Materials and methods: We have developed a universal data wrangling pipeline to process and merge heterogeneous data sources of the All of Us dataset, address missingness and variance in data, and align disparate data modalities into a coherent framework for analysis. Utilizing a composite feature set including EHR, lifestyle, and social determinants of health (SDoH) data, we then employed Adaptive Lasso and Random Forest regression models to predict 6 CVD outcomes. The models were evaluated using the c-index and time-dependent Area Under the Receiver Operating Characteristic Curve over a 10-year period.
Results: The Adaptive Lasso model showed consistent performance across most CVD outcomes, while the Random Forest model excelled particularly in predicting outcomes like transient ischemic attack when incorporating the full multi-model feature set. Feature importance analysis revealed age and previous coronary events as dominant predictors across CVD outcomes, with SDoH clustering labels highlighting the nuanced impact of social factors.
Discussion: The development of both Cox-based predictive model and Random Forest Regression model represents the extensive application of the All of Us, in integrating EHR and patient surveys to enhance precision medicine. And the inclusion of SDoH clustering labels revealed the significant impact of sociobehavioral factors on patient outcomes, emphasizing the importance of comprehensive health determinants in predictive models. Despite these advancements, limitations include the exclusion of genetic data, broad categorization of CVD conditions, and the need for fairness analyses to ensure equitable model performance across diverse populations. Future work should refine clinical and social variable measurements, incorporate advanced imputation techniques, and explore additional predictive algorithms to enhance model precision and fairness.
Conclusion: This study demonstrates the liability of the All of Us's diverse dataset in developing a multi-modality predictive model for CVD in BC survivors risk stratification in oncological survivorship. The data integration pipeline and subsequent predictive models establish a methodological foundation for future research into personalized healthcare.
期刊介绍:
JAMIA is AMIA''s premier peer-reviewed journal for biomedical and health informatics. Covering the full spectrum of activities in the field, JAMIA includes informatics articles in the areas of clinical care, clinical research, translational science, implementation science, imaging, education, consumer health, public health, and policy. JAMIA''s articles describe innovative informatics research and systems that help to advance biomedical science and to promote health. Case reports, perspectives and reviews also help readers stay connected with the most important informatics developments in implementation, policy and education.