Waylon Zeng, Cory Ilo, Douglas Bowman, James Thompson
{"title":"Virtual Loupes: A Pilot Study on the Use of Video Passthrough Augmented Reality in Plastic Surgery.","authors":"Waylon Zeng, Cory Ilo, Douglas Bowman, James Thompson","doi":"10.1177/15533506241265544","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Plastic surgeons use loupes or operative microscope to aid in tissue dissection and anastomosis of structures. These devices have their own limitations in areas of visualization and weight. Current uses of augmented and virtual reality in surgery have been limited to operative planning and simulation. We present a proof of concept that harnesses video passthrough AR technology to augment the capabilities of loupes.</p><p><strong>Methods: </strong>We first evaluated methods of gaze-based eye tracking to enable digital magnification. Using the Varjo XR-1 mixed reality headset, we compared discrete zoom through displayed pop-up menu vs continuous zoom through eye winking. Six participants were recruited to perform skin suturing simulation and completed a survey and interview. Next we assessed the performance and limitations of AR digital magnification. Varjo XR-3 was utilized to address the hardware limitations. Participants performed anastomotic suturing tasks with progressively finer suture, then completed a survey and interview.</p><p><strong>Findings: </strong>There was no strong preference between zoom methods, although participants felt the discrete zoom was easier to use. Participants had difficulty determining depth and visualizing the suture due to limitations of digital magnification. Using Wilcoxon rank sum test to examine differences in system usability scale, the Phase 2 user experience had significant difference in percentile distribution (<i>P</i> 0.0390).</p><p><strong>Conclusion: </strong>Virtual loupes may be a valuable tool for plastic surgeons, with potential for variable magnification and advanced visualization. Improvements in the hardware yielded higher ratings of system usability and user experience. Further development is needed to address the limitations of existing devices.</p>","PeriodicalId":22095,"journal":{"name":"Surgical Innovation","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surgical Innovation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/15533506241265544","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"SURGERY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Plastic surgeons use loupes or operative microscope to aid in tissue dissection and anastomosis of structures. These devices have their own limitations in areas of visualization and weight. Current uses of augmented and virtual reality in surgery have been limited to operative planning and simulation. We present a proof of concept that harnesses video passthrough AR technology to augment the capabilities of loupes.
Methods: We first evaluated methods of gaze-based eye tracking to enable digital magnification. Using the Varjo XR-1 mixed reality headset, we compared discrete zoom through displayed pop-up menu vs continuous zoom through eye winking. Six participants were recruited to perform skin suturing simulation and completed a survey and interview. Next we assessed the performance and limitations of AR digital magnification. Varjo XR-3 was utilized to address the hardware limitations. Participants performed anastomotic suturing tasks with progressively finer suture, then completed a survey and interview.
Findings: There was no strong preference between zoom methods, although participants felt the discrete zoom was easier to use. Participants had difficulty determining depth and visualizing the suture due to limitations of digital magnification. Using Wilcoxon rank sum test to examine differences in system usability scale, the Phase 2 user experience had significant difference in percentile distribution (P 0.0390).
Conclusion: Virtual loupes may be a valuable tool for plastic surgeons, with potential for variable magnification and advanced visualization. Improvements in the hardware yielded higher ratings of system usability and user experience. Further development is needed to address the limitations of existing devices.
期刊介绍:
Surgical Innovation (SRI) is a peer-reviewed bi-monthly journal focusing on minimally invasive surgical techniques, new instruments such as laparoscopes and endoscopes, and new technologies. SRI prepares surgeons to think and work in "the operating room of the future" through learning new techniques, understanding and adapting to new technologies, maintaining surgical competencies, and applying surgical outcomes data to their practices. This journal is a member of the Committee on Publication Ethics (COPE).