Vertically stacked skin-like active-matrix display with ultrahigh aperture ratio.

IF 19.4 1区 物理与天体物理 Q1 Physics and Astronomy
Juntong Li, Yanping Ni, Xiaoli Zhao, Bin Wang, Chuang Xue, Zetong Bi, Cong Zhang, Yongjun Dong, Yanhong Tong, Qingxin Tang, Yichun Liu
{"title":"Vertically stacked skin-like active-matrix display with ultrahigh aperture ratio.","authors":"Juntong Li, Yanping Ni, Xiaoli Zhao, Bin Wang, Chuang Xue, Zetong Bi, Cong Zhang, Yongjun Dong, Yanhong Tong, Qingxin Tang, Yichun Liu","doi":"10.1038/s41377-024-01524-z","DOIUrl":null,"url":null,"abstract":"<p><p>Vertically stacked all-organic active-matrix organic light-emitting diodes are promising candidates for high-quality skin-like displays due to their high aperture ratio, extreme mechanical flexibility, and low-temperature processing ability. However, these displays suffer from process interferences when interconnecting functional layers made of all-organic materials. To overcome this challenge, we present an innovative integration strategy called \"discrete preparation-multilayer lamination\" based on microelectronic processes. In this strategy, each functional layer was prepared separately on different substrates to avoid chemical and physical damage caused by process interferences. A single interconnect layer was introduced between each vertically stacked functional layer to ensure mechanical compatibility and interconnection. Compared to the previously reported layer-by-layer preparation method, the proposed method eliminates the need for tedious protection via barrier and pixel-defining layer processing steps. Additionally, based on active-matrix display, this strategy allows multiple pixels to collectively display a pattern of \"1\" with an aperture ratio of 83%. Moreover, the average mobility of full-photolithographic organic thin-film transistors was 1.04 cm<sup>2</sup> V<sup>-1</sup> s<sup>-</sup><sup>1</sup>, ensuring stable and uniform displays. This strategy forms the basis for the construction of vertically stacked active-matrix displays, which should facilitate the commercial development of skin-like displays in wearable electronics.</p>","PeriodicalId":18093,"journal":{"name":"Light, science & applications","volume":"13 1","pages":"177"},"PeriodicalIF":19.4000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11282298/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light, science & applications","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41377-024-01524-z","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

Vertically stacked all-organic active-matrix organic light-emitting diodes are promising candidates for high-quality skin-like displays due to their high aperture ratio, extreme mechanical flexibility, and low-temperature processing ability. However, these displays suffer from process interferences when interconnecting functional layers made of all-organic materials. To overcome this challenge, we present an innovative integration strategy called "discrete preparation-multilayer lamination" based on microelectronic processes. In this strategy, each functional layer was prepared separately on different substrates to avoid chemical and physical damage caused by process interferences. A single interconnect layer was introduced between each vertically stacked functional layer to ensure mechanical compatibility and interconnection. Compared to the previously reported layer-by-layer preparation method, the proposed method eliminates the need for tedious protection via barrier and pixel-defining layer processing steps. Additionally, based on active-matrix display, this strategy allows multiple pixels to collectively display a pattern of "1" with an aperture ratio of 83%. Moreover, the average mobility of full-photolithographic organic thin-film transistors was 1.04 cm2 V-1 s-1, ensuring stable and uniform displays. This strategy forms the basis for the construction of vertically stacked active-matrix displays, which should facilitate the commercial development of skin-like displays in wearable electronics.

Abstract Image

垂直堆叠的类肤质主动矩阵显示屏,具有超高光圈比。
垂直堆叠的全有机有源矩阵有机发光二极管具有高孔径比、极高的机械柔韧性和低温加工能力,是高品质类肤显示器的理想候选材料。然而,这些显示器在连接由全有机材料制成的功能层时受到工艺干扰。为了克服这一难题,我们提出了一种基于微电子工艺的创新集成策略,即 "离散制备-多层层压"。在这种策略中,每个功能层都在不同的基底上分别制备,以避免工艺干扰造成的化学和物理损坏。在每个垂直堆叠的功能层之间引入了单个互连层,以确保机械兼容性和互连性。与之前报道的逐层制备方法相比,所提出的方法省去了繁琐的屏障保护和像素定义层处理步骤。此外,基于有源矩阵显示技术,这种策略允许多个像素共同显示 "1 "的图案,孔径比高达 83%。此外,全光刻有机薄膜晶体管的平均迁移率为 1.04 cm2 V-1 s-1,确保了显示的稳定性和一致性。这一策略为构建垂直堆叠的有源矩阵显示屏奠定了基础,将促进可穿戴电子设备中类皮肤显示屏的商业开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
27.00
自引率
2.60%
发文量
331
审稿时长
20 weeks
期刊介绍: Light: Science & Applications is an open-access, fully peer-reviewed publication.It publishes high-quality optics and photonics research globally, covering fundamental research and important issues in engineering and applied sciences related to optics and photonics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信