Jiehu Liu , Runtian Huo , Huixian Fu , Shiheng Chen , Xueyi Qiao , Bo Xu , Zhaoyuan Zhang , Jing Wu , Lingqia Su
{"title":"High-efficient preparation of β-nicotinamide mononucleotides by crude enzymes cascade catalytic reaction","authors":"Jiehu Liu , Runtian Huo , Huixian Fu , Shiheng Chen , Xueyi Qiao , Bo Xu , Zhaoyuan Zhang , Jing Wu , Lingqia Su","doi":"10.1016/j.enzmictec.2024.110482","DOIUrl":null,"url":null,"abstract":"<div><p>β-nicotinamide mononucleotide (β-NMN) is a key precursor of nicotinamide adenine dinucleotide, and becomes attractive in the nutrition and health care fields, but its enzymatic synthesis is expensive. In this study, a six-enzyme cascade catalytic system was constructed to produce β-NMN. Using D-ribose and nicotinamide as substrates, the β-NMN yield reached 97.5 % catalyzed by purified enzymes. Then, after knocking out the genes encoding proteins that consume β-NMN in <em>E. coli</em> BL21(DE3), the similar β-NMN yield, 97.2 %, using the crude enzymes could be also obtained. After that, β-NMN synthesis was performed under increased substrate concentration, and 'modular' crude enzymes cascade catalytic reaction system was proposed to reduce the inhibition of polyphosphate on ribose-phosphate diphosphokinase activity, and the β-NMN yield reached 78.4 % at 10 mM D-ribose, which is 1.82 times of that in 'one-pot' reaction and represents the highest β-NMN preparation level with phosphoribosylpyrophosphate as the core reported till now.</p></div>","PeriodicalId":11770,"journal":{"name":"Enzyme and Microbial Technology","volume":"180 ","pages":"Article 110482"},"PeriodicalIF":3.4000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enzyme and Microbial Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141022924000899","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
β-nicotinamide mononucleotide (β-NMN) is a key precursor of nicotinamide adenine dinucleotide, and becomes attractive in the nutrition and health care fields, but its enzymatic synthesis is expensive. In this study, a six-enzyme cascade catalytic system was constructed to produce β-NMN. Using D-ribose and nicotinamide as substrates, the β-NMN yield reached 97.5 % catalyzed by purified enzymes. Then, after knocking out the genes encoding proteins that consume β-NMN in E. coli BL21(DE3), the similar β-NMN yield, 97.2 %, using the crude enzymes could be also obtained. After that, β-NMN synthesis was performed under increased substrate concentration, and 'modular' crude enzymes cascade catalytic reaction system was proposed to reduce the inhibition of polyphosphate on ribose-phosphate diphosphokinase activity, and the β-NMN yield reached 78.4 % at 10 mM D-ribose, which is 1.82 times of that in 'one-pot' reaction and represents the highest β-NMN preparation level with phosphoribosylpyrophosphate as the core reported till now.
期刊介绍:
Enzyme and Microbial Technology is an international, peer-reviewed journal publishing original research and reviews, of biotechnological significance and novelty, on basic and applied aspects of the science and technology of processes involving the use of enzymes, micro-organisms, animal cells and plant cells.
We especially encourage submissions on:
Biocatalysis and the use of Directed Evolution in Synthetic Biology and Biotechnology
Biotechnological Production of New Bioactive Molecules, Biomaterials, Biopharmaceuticals, and Biofuels
New Imaging Techniques and Biosensors, especially as applicable to Healthcare and Systems Biology
New Biotechnological Approaches in Genomics, Proteomics and Metabolomics
Metabolic Engineering, Biomolecular Engineering and Nanobiotechnology
Manuscripts which report isolation, purification, immobilization or utilization of organisms or enzymes which are already well-described in the literature are not suitable for publication in EMT, unless their primary purpose is to report significant new findings or approaches which are of broad biotechnological importance. Similarly, manuscripts which report optimization studies on well-established processes are inappropriate. EMT does not accept papers dealing with mathematical modeling unless they report significant, new experimental data.