Opportunities and shortcomings of AI for spatial epidemiology and health disparities research on aging and the life course

IF 3.8 2区 医学 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Hoda S. Abdel Magid , Michael R. Desjardins , Yingjie Hu
{"title":"Opportunities and shortcomings of AI for spatial epidemiology and health disparities research on aging and the life course","authors":"Hoda S. Abdel Magid ,&nbsp;Michael R. Desjardins ,&nbsp;Yingjie Hu","doi":"10.1016/j.healthplace.2024.103323","DOIUrl":null,"url":null,"abstract":"<div><p>Established spatial and life course methods have helped epidemiologists and health and medical geographers study the impact of individual and area-level determinants on health disparities. While these methods are effective, the emergence of Geospatial Artificial Intelligence (GeoAI) offers new opportunities to leverage complex and multi-scalar data in spatial aging and life course research. The objective of this perspective is three-fold: (1) to review established methods in aging, life course, and spatial epidemiology research; (2) to highlight some of the opportunities offered by GeoAI for enhancing research on health disparities across life course and aging research; (3) to discuss the shortcomings of using GeoAI methods in aging and life course studies.</p></div>","PeriodicalId":49302,"journal":{"name":"Health & Place","volume":"89 ","pages":"Article 103323"},"PeriodicalIF":3.8000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health & Place","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1353829224001515","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

Abstract

Established spatial and life course methods have helped epidemiologists and health and medical geographers study the impact of individual and area-level determinants on health disparities. While these methods are effective, the emergence of Geospatial Artificial Intelligence (GeoAI) offers new opportunities to leverage complex and multi-scalar data in spatial aging and life course research. The objective of this perspective is three-fold: (1) to review established methods in aging, life course, and spatial epidemiology research; (2) to highlight some of the opportunities offered by GeoAI for enhancing research on health disparities across life course and aging research; (3) to discuss the shortcomings of using GeoAI methods in aging and life course studies.

人工智能在老龄化和生命过程的空间流行病学和健康差异研究方面的机遇和不足。
已有的空间和生命历程方法帮助流行病学家和健康与医学地理学家研究个人和地区层面的决定因素对健康差异的影响。虽然这些方法很有效,但地理空间人工智能(GeoAI)的出现为在空间老龄化和生命历程研究中利用复杂的多尺度数据提供了新的机遇。本视角的目的有三:(1)回顾老龄化、生命历程和空间流行病学研究中的既定方法;(2)强调 GeoAI 为加强生命历程和老龄化研究中的健康差异研究提供的一些机会;(3)讨论在老龄化和生命历程研究中使用 GeoAI 方法的不足之处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Health & Place
Health & Place PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH-
CiteScore
7.70
自引率
6.20%
发文量
176
审稿时长
29 days
期刊介绍: he journal is an interdisciplinary journal dedicated to the study of all aspects of health and health care in which place or location matters.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信