Recombinant Interleukin - 2 2 Immunotherapy Ameliorates Inflammation and Promotes the Release of Monoamine Neurotransmitters in the Gut-Brain Axis of Schistosoma mansoni-Infected Mice.

IF 6.2
Heba S Mehran, Soad Nady, Rami B Kassab, Omar A Ahmed-Farid, Rehab E El-Hennamy
{"title":"Recombinant Interleukin - 2 2 Immunotherapy Ameliorates Inflammation and Promotes the Release of Monoamine Neurotransmitters in the Gut-Brain Axis of Schistosoma mansoni-Infected Mice.","authors":"Heba S Mehran, Soad Nady, Rami B Kassab, Omar A Ahmed-Farid, Rehab E El-Hennamy","doi":"10.1007/s11481-024-10133-x","DOIUrl":null,"url":null,"abstract":"<p><p>Recombinant interleukin-22 (rIL-22) has been reported as a protective agent in murine models of diseases driven by epithelial injury. Parasites have a circadian rhythm and their sensitivity to a certain drug may vary during the day. Therefore, this work aimed to investigate the effect of rIL-22 administration at different times of the day on the inflammation, oxidative status, and neurotransmitter release in the gut-brain axis of the Schistosoma mansoni-infected mice. Sixty male BALB/c mice aged six weeks weighing 25-30 g were divided into a control group (injected intraperitoneally with PBS), mice infected with 80 ± 10 cercariae of S. mansoni (infected group) then injected intraperitoneally with PBS, and rIL-22 treated groups. rIL-22 was administrated intraperitoneally (400 ng/kg) either at the onset or offset of the light phase for 14 days. IL-22 administration reduced the levels of IL-1β, tumor necrosis factor-alpha (TNF-α), nuclear factor kappa beta (NF-κβ), and enhanced the production of IL-22 and IL-17. The treatment with IL-22 increased glutathione (GSH) and reduced malondialdehyde (MDA) and nitric oxide (NO) levels both in the ileum and brain. The B-cell lymphoma 2 (BCL2) protein level in the ileum was diminished after IL-22 administration. Brain-derived neurotrophic factor (BDNF) and neurotransmitter release (serotonin, 5HT, norepinephrine, NE, dopamine, DA, Glutamate, Glu, and -amino butyric acid, GABA) were improved by rIL-22. In conclusion, rIL-22 showed promising immunotherapy for inflammation, oxidative damage, and neuropathological signs associated with schistosomiasis. The efficacy of IL-22 increased significantly upon its administration at the time of light offset.</p>","PeriodicalId":73858,"journal":{"name":"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology","volume":"19 1","pages":"37"},"PeriodicalIF":6.2000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11481-024-10133-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recombinant interleukin-22 (rIL-22) has been reported as a protective agent in murine models of diseases driven by epithelial injury. Parasites have a circadian rhythm and their sensitivity to a certain drug may vary during the day. Therefore, this work aimed to investigate the effect of rIL-22 administration at different times of the day on the inflammation, oxidative status, and neurotransmitter release in the gut-brain axis of the Schistosoma mansoni-infected mice. Sixty male BALB/c mice aged six weeks weighing 25-30 g were divided into a control group (injected intraperitoneally with PBS), mice infected with 80 ± 10 cercariae of S. mansoni (infected group) then injected intraperitoneally with PBS, and rIL-22 treated groups. rIL-22 was administrated intraperitoneally (400 ng/kg) either at the onset or offset of the light phase for 14 days. IL-22 administration reduced the levels of IL-1β, tumor necrosis factor-alpha (TNF-α), nuclear factor kappa beta (NF-κβ), and enhanced the production of IL-22 and IL-17. The treatment with IL-22 increased glutathione (GSH) and reduced malondialdehyde (MDA) and nitric oxide (NO) levels both in the ileum and brain. The B-cell lymphoma 2 (BCL2) protein level in the ileum was diminished after IL-22 administration. Brain-derived neurotrophic factor (BDNF) and neurotransmitter release (serotonin, 5HT, norepinephrine, NE, dopamine, DA, Glutamate, Glu, and -amino butyric acid, GABA) were improved by rIL-22. In conclusion, rIL-22 showed promising immunotherapy for inflammation, oxidative damage, and neuropathological signs associated with schistosomiasis. The efficacy of IL-22 increased significantly upon its administration at the time of light offset.

Abstract Image

重组白细胞介素-2 2免疫疗法可改善炎症并促进曼氏血吸虫感染小鼠肠脑轴单胺神经递质的释放。
据报道,重组白细胞介素-22(rIL-22)在上皮损伤引起的疾病的小鼠模型中具有保护作用。寄生虫有昼夜节律,它们对某种药物的敏感性在一天中可能会有所不同。因此,本研究旨在探讨在一天中的不同时间服用 rIL-22 对曼氏血吸虫感染小鼠肠脑轴的炎症、氧化状态和神经递质释放的影响。将 60 只年龄为 6 周、体重为 25-30 克的雄性 BALB/c 小鼠分为对照组(腹腔注射 PBS)、感染了 80 ± 10 个曼氏血吸虫蚴(感染组)并腹腔注射 PBS 的小鼠(感染组)和 rIL-22 治疗组。IL-22 可降低 IL-1β、肿瘤坏死因子-α(TNF-α)、核因子卡巴β(NF-κβ)的水平,并促进 IL-22 和 IL-17 的产生。用 IL-22 治疗后,回肠和大脑中的谷胱甘肽(GSH)增加,丙二醛(MDA)和一氧化氮(NO)水平降低。服用 IL-22 后,回肠中的 B 细胞淋巴瘤 2 (BCL2) 蛋白水平降低。脑源性神经营养因子(BDNF)和神经递质(5-羟色胺、5HT、去甲肾上腺素、NE、多巴胺、DA、谷氨酸、Glu 和-氨基丁酸、GABA)的释放均因 rIL-22 而得到改善。总之,rIL-22 对与血吸虫病相关的炎症、氧化损伤和神经病理迹象显示出良好的免疫治疗效果。在光抵消时施用IL-22,疗效显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信