Jingyi Huang, Peiqi Guo, Sheng Zhang, Mengmeng Ji, Ruopeng An
{"title":"Use of Deep Neural Networks to Predict Obesity With Short Audio Recordings: Development and Usability Study.","authors":"Jingyi Huang, Peiqi Guo, Sheng Zhang, Mengmeng Ji, Ruopeng An","doi":"10.2196/54885","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The escalating global prevalence of obesity has necessitated the exploration of novel diagnostic approaches. Recent scientific inquiries have indicated potential alterations in voice characteristics associated with obesity, suggesting the feasibility of using voice as a noninvasive biomarker for obesity detection.</p><p><strong>Objective: </strong>This study aims to use deep neural networks to predict obesity status through the analysis of short audio recordings, investigating the relationship between vocal characteristics and obesity.</p><p><strong>Methods: </strong>A pilot study was conducted with 696 participants, using self-reported BMI to classify individuals into obesity and nonobesity groups. Audio recordings of participants reading a short script were transformed into spectrograms and analyzed using an adapted YOLOv8 model (Ultralytics). The model performance was evaluated using accuracy, recall, precision, and F<sub>1</sub>-scores.</p><p><strong>Results: </strong>The adapted YOLOv8 model demonstrated a global accuracy of 0.70 and a macro F<sub>1</sub>-score of 0.65. It was more effective in identifying nonobesity (F<sub>1</sub>-score of 0.77) than obesity (F<sub>1</sub>-score of 0.53). This moderate level of accuracy highlights the potential and challenges in using vocal biomarkers for obesity detection.</p><p><strong>Conclusions: </strong>While the study shows promise in the field of voice-based medical diagnostics for obesity, it faces limitations such as reliance on self-reported BMI data and a small, homogenous sample size. These factors, coupled with variability in recording quality, necessitate further research with more robust methodologies and diverse samples to enhance the validity of this novel approach. The findings lay a foundational step for future investigations in using voice as a noninvasive biomarker for obesity detection.</p>","PeriodicalId":73551,"journal":{"name":"JMIR AI","volume":"3 ","pages":"e54885"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11310637/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/54885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The escalating global prevalence of obesity has necessitated the exploration of novel diagnostic approaches. Recent scientific inquiries have indicated potential alterations in voice characteristics associated with obesity, suggesting the feasibility of using voice as a noninvasive biomarker for obesity detection.
Objective: This study aims to use deep neural networks to predict obesity status through the analysis of short audio recordings, investigating the relationship between vocal characteristics and obesity.
Methods: A pilot study was conducted with 696 participants, using self-reported BMI to classify individuals into obesity and nonobesity groups. Audio recordings of participants reading a short script were transformed into spectrograms and analyzed using an adapted YOLOv8 model (Ultralytics). The model performance was evaluated using accuracy, recall, precision, and F1-scores.
Results: The adapted YOLOv8 model demonstrated a global accuracy of 0.70 and a macro F1-score of 0.65. It was more effective in identifying nonobesity (F1-score of 0.77) than obesity (F1-score of 0.53). This moderate level of accuracy highlights the potential and challenges in using vocal biomarkers for obesity detection.
Conclusions: While the study shows promise in the field of voice-based medical diagnostics for obesity, it faces limitations such as reliance on self-reported BMI data and a small, homogenous sample size. These factors, coupled with variability in recording quality, necessitate further research with more robust methodologies and diverse samples to enhance the validity of this novel approach. The findings lay a foundational step for future investigations in using voice as a noninvasive biomarker for obesity detection.