Synchronising a stereoscopic surgical video stream using specular reflection.

IF 2.3 3区 医学 Q3 ENGINEERING, BIOMEDICAL
Kilian Chandelon, Adrien Bartoli
{"title":"Synchronising a stereoscopic surgical video stream using specular reflection.","authors":"Kilian Chandelon, Adrien Bartoli","doi":"10.1007/s11548-024-03232-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>A stereoscopic surgical video stream consists of left-right image pairs provided by a stereo endoscope. While the surgical display shows these image pairs synchronised, most capture cards cause de-synchronisation. This means that the paired left and right images may not correspond once used in downstream tasks such as stereo depth computation. The stereo synchronisation problem is to recover the corresponding left-right images. This is particularly challenging in the surgical setting, owing to the moist tissues, rapid camera motion, quasi-staticity and real-time processing requirement. Existing methods exploit image cues from the diffuse reflection component and are defeated by the above challenges.</p><p><strong>Methods: </strong>We propose to exploit the specular reflection. Specifically, we propose a powerful left-right comparison score (LRCS) using the specular highlights commonly occurring on moist tissues. We detect the highlights using a neural network, characterise them with invariant descriptors, match them, and use the number of matches to form the proposed LRCS. We perform evaluation against 147 existing LRCS in 44 challenging robotic partial nephrectomy and robotic-assisted hepatic resection video sequences with simulated and real de-synchronisation.</p><p><strong>Results: </strong>The proposed LRCS outperforms, with an average and maximum offsets of 0.055 and 1 frames and 94.1±3.6% successfully synchronised frames. In contrast, the best existing LRCS achieves an average and maximum offsets of 0.3 and 3 frames and 81.2±6.4% successfully synchronised frames.</p><p><strong>Conclusion: </strong>The use of specular reflection brings a tremendous boost to the real-time surgical stereo synchronisation problem.</p>","PeriodicalId":51251,"journal":{"name":"International Journal of Computer Assisted Radiology and Surgery","volume":" ","pages":"289-299"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Assisted Radiology and Surgery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11548-024-03232-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: A stereoscopic surgical video stream consists of left-right image pairs provided by a stereo endoscope. While the surgical display shows these image pairs synchronised, most capture cards cause de-synchronisation. This means that the paired left and right images may not correspond once used in downstream tasks such as stereo depth computation. The stereo synchronisation problem is to recover the corresponding left-right images. This is particularly challenging in the surgical setting, owing to the moist tissues, rapid camera motion, quasi-staticity and real-time processing requirement. Existing methods exploit image cues from the diffuse reflection component and are defeated by the above challenges.

Methods: We propose to exploit the specular reflection. Specifically, we propose a powerful left-right comparison score (LRCS) using the specular highlights commonly occurring on moist tissues. We detect the highlights using a neural network, characterise them with invariant descriptors, match them, and use the number of matches to form the proposed LRCS. We perform evaluation against 147 existing LRCS in 44 challenging robotic partial nephrectomy and robotic-assisted hepatic resection video sequences with simulated and real de-synchronisation.

Results: The proposed LRCS outperforms, with an average and maximum offsets of 0.055 and 1 frames and 94.1±3.6% successfully synchronised frames. In contrast, the best existing LRCS achieves an average and maximum offsets of 0.3 and 3 frames and 81.2±6.4% successfully synchronised frames.

Conclusion: The use of specular reflection brings a tremendous boost to the real-time surgical stereo synchronisation problem.

Abstract Image

利用镜面反射同步立体手术视频流
目的:立体手术视频流由立体内窥镜提供的左右图像对组成。虽然手术显示屏会同步显示这些图像对,但大多数采集卡都会导致去同步。这意味着在下游任务(如立体深度计算)中使用时,成对的左右图像可能不一致。立体同步问题就是恢复对应的左右图像。在外科手术环境中,由于组织潮湿、相机快速运动、准静态和实时处理要求,这尤其具有挑战性。现有方法利用漫反射部分的图像线索,但因上述挑战而失败:我们建议利用镜面反射。具体来说,我们利用湿润组织上常见的镜面反射高光,提出了一种功能强大的左右对比评分法(LRCS)。我们使用神经网络检测高光,用不变描述符对其进行特征描述、匹配,并使用匹配的数量来形成建议的 LRCS。我们在 44 个具有挑战性的机器人肾部分切除术和机器人辅助肝切除术视频序列中,通过模拟和实际去同步化,对现有的 147 个 LRCS 进行了评估:拟议的 LRCS 性能优越,平均偏移和最大偏移分别为 0.055 帧和 1 帧,成功同步帧数为 94.1±3.6%。相比之下,现有最佳 LRCS 的平均和最大偏移量分别为 0.3 帧和 3 帧,成功同步帧数为 81.2±6.4%:结论:镜面反射的使用极大地推动了实时手术立体同步问题的解决。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Computer Assisted Radiology and Surgery
International Journal of Computer Assisted Radiology and Surgery ENGINEERING, BIOMEDICAL-RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
CiteScore
5.90
自引率
6.70%
发文量
243
审稿时长
6-12 weeks
期刊介绍: The International Journal for Computer Assisted Radiology and Surgery (IJCARS) is a peer-reviewed journal that provides a platform for closing the gap between medical and technical disciplines, and encourages interdisciplinary research and development activities in an international environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信