RNA-sequencing reveals a shared neurotranscriptomic profile in the medial preoptic area of highly social songbirds and rats

IF 2.4 4区 心理学 Q2 BEHAVIORAL SCIENCES
Brandon J. Polzin, Changjiu Zhao, Sharon A. Stevenson, Stephen C. Gammie, Lauren V. Riters
{"title":"RNA-sequencing reveals a shared neurotranscriptomic profile in the medial preoptic area of highly social songbirds and rats","authors":"Brandon J. Polzin,&nbsp;Changjiu Zhao,&nbsp;Sharon A. Stevenson,&nbsp;Stephen C. Gammie,&nbsp;Lauren V. Riters","doi":"10.1111/gbb.12908","DOIUrl":null,"url":null,"abstract":"<p>Rough-and-tumble play in juvenile rats and song in flocks of adult songbirds outside a breeding context (gregarious song) are two distinct forms of non-sexual social behavior. Both are believed to play roles in the development of sociomotor skills needed for later life-history events, including reproduction, providing opportunities for low-stakes practice. Additionally, both behaviors are thought to be intrinsically rewarded and are associated with a positive affective state. Given the functional similarities of these behaviors, this study used RNA-sequencing to identify commonalities in their underlying neurochemical systems within the medial preoptic area. This brain region is implicated in multiple social behaviors, including song and play, and is highly conserved across vertebrates. DESeq2 and rank–rank hypergeometric overlap analyses identified a shared neurotranscriptomic profile in adult European starlings singing high rates of gregarious song and juvenile rats playing at high rates. Transcript levels for several glutamatergic receptor genes, such as GRIN1, GRIN2A, and GRIA1, were consistently upregulated in highly gregarious (i.e., playful/high singing) animals. This study is the first to directly investigate shared neuromodulators of positive, non-sexual social behaviors across songbirds and mammals. It provides insight into a conserved brain region that may regulate similar behaviors across vertebrates.</p>","PeriodicalId":50426,"journal":{"name":"Genes Brain and Behavior","volume":"23 4","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11271255/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes Brain and Behavior","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gbb.12908","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Rough-and-tumble play in juvenile rats and song in flocks of adult songbirds outside a breeding context (gregarious song) are two distinct forms of non-sexual social behavior. Both are believed to play roles in the development of sociomotor skills needed for later life-history events, including reproduction, providing opportunities for low-stakes practice. Additionally, both behaviors are thought to be intrinsically rewarded and are associated with a positive affective state. Given the functional similarities of these behaviors, this study used RNA-sequencing to identify commonalities in their underlying neurochemical systems within the medial preoptic area. This brain region is implicated in multiple social behaviors, including song and play, and is highly conserved across vertebrates. DESeq2 and rank–rank hypergeometric overlap analyses identified a shared neurotranscriptomic profile in adult European starlings singing high rates of gregarious song and juvenile rats playing at high rates. Transcript levels for several glutamatergic receptor genes, such as GRIN1, GRIN2A, and GRIA1, were consistently upregulated in highly gregarious (i.e., playful/high singing) animals. This study is the first to directly investigate shared neuromodulators of positive, non-sexual social behaviors across songbirds and mammals. It provides insight into a conserved brain region that may regulate similar behaviors across vertebrates.

Abstract Image

核糖核酸测序揭示了高度社会性鸣禽和大鼠内侧视前区的共同神经转录组特征。
幼鼠的翻滚嬉戏和成年鸣禽在繁殖环境外的成群鸣唱(群鸣)是两种不同形式的非性社会行为。人们认为,这两种行为都有助于发展以后的生活史活动(包括繁殖)所需的社会运动技能,为低风险练习提供了机会。此外,这两种行为都被认为是内在奖励,并与积极的情感状态相关联。鉴于这两种行为在功能上的相似性,本研究利用 RNA 序列鉴定了它们在内侧视前区的潜在神经化学系统中的共性。这个脑区与包括唱歌和游戏在内的多种社会行为有关,而且在脊椎动物中高度保守。DESeq2和秩等级超几何重叠分析确定了欧洲椋鸟成鸟高频率集体歌唱和幼鼠高频率玩耍的共同神经转录组特征。一些谷氨酸能受体基因,如 GRIN1、GRIN2A 和 GRIA1 的转录水平在高群聚性(即嬉戏/高鸣唱)动物中持续上调。这项研究首次直接调查了鸣禽和哺乳动物积极的非性社交行为的共同神经调节因子。它让我们深入了解了一个可能调控脊椎动物类似行为的保守脑区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Genes Brain and Behavior
Genes Brain and Behavior 医学-行为科学
CiteScore
6.80
自引率
4.00%
发文量
62
审稿时长
4-8 weeks
期刊介绍: Genes, Brain and Behavior was launched in 2002 with the aim of publishing top quality research in behavioral and neural genetics in their broadest sense. The emphasis is on the analysis of the behavioral and neural phenotypes under consideration, the unifying theme being the genetic approach as a tool to increase our understanding of these phenotypes. Genes Brain and Behavior is pleased to offer the following features: 8 issues per year online submissions with first editorial decisions within 3-4 weeks and fast publication at Wiley-Blackwells High visibility through its coverage by PubMed/Medline, Current Contents and other major abstracting and indexing services Inclusion in the Wiley-Blackwell consortial license, extending readership to thousands of international libraries and institutions A large and varied editorial board comprising of international specialists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信