Proton Beam Range and Charge Verification Using Multilayer Faraday Collector.

IF 2.7 4区 医学 Q3 ONCOLOGY
Ping L Yeap, Kah S Lew, Wei Y C Koh, Clifford G A Chua, Andrew Wibawa, Zubin Master, James C L Lee, Sung Y Park, Hong Q Tan
{"title":"Proton Beam Range and Charge Verification Using Multilayer Faraday Collector.","authors":"Ping L Yeap, Kah S Lew, Wei Y C Koh, Clifford G A Chua, Andrew Wibawa, Zubin Master, James C L Lee, Sung Y Park, Hong Q Tan","doi":"10.1177/15330338241262610","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>A daily quality assurance (QA) check in proton therapy is ensuring that the range of each proton beam energy in water is accurate to 1 mm. This is important for ensuring that the tumor is adequately irradiated while minimizing damage to surrounding healthy tissue. It is also important to verify the total charge collected against the beam model. This work proposes a time-efficient method for verifying the range and total charge of proton beams at different energies using a multilayer Faraday collector (MLFC).</p><p><strong>Methods: </strong>We used an MLFC-128-250 MeV comprising 128 layers of thin copper foils separated by thin insulating Kapton<sup>TM</sup> layers. Protons passing through the collector induce a charge on the metallic foils, which is integrated and measured by a multichannel electrometer. The charge deposition on the foils provides information about the beam range.</p><p><strong>Results: </strong>Our results show that the proton beam range obtained using MLFC correlates closely with the range obtained from commissioning water tank measurements for all proton energies. Upon applying a range calibration factor, the maximum deviation is 0.4 g/cm<sup>2</sup>. The MLFC range showed no dependence on the number of monitor units and the source-to-surface distance. Range measurements collected over multiple weeks exhibited stability. The total charge collected agrees closely with the theoretical charge from the treatment planning system beam model for low- and mid-range energies.</p><p><strong>Conclusions: </strong>We have calibrated and commissioned the use of the MLFC to easily verify range and total charge of proton beams. This tool will improve the workflow efficiency of the proton QA.</p>","PeriodicalId":22203,"journal":{"name":"Technology in Cancer Research & Treatment","volume":"23 ","pages":"15330338241262610"},"PeriodicalIF":2.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11320672/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technology in Cancer Research & Treatment","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/15330338241262610","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: A daily quality assurance (QA) check in proton therapy is ensuring that the range of each proton beam energy in water is accurate to 1 mm. This is important for ensuring that the tumor is adequately irradiated while minimizing damage to surrounding healthy tissue. It is also important to verify the total charge collected against the beam model. This work proposes a time-efficient method for verifying the range and total charge of proton beams at different energies using a multilayer Faraday collector (MLFC).

Methods: We used an MLFC-128-250 MeV comprising 128 layers of thin copper foils separated by thin insulating KaptonTM layers. Protons passing through the collector induce a charge on the metallic foils, which is integrated and measured by a multichannel electrometer. The charge deposition on the foils provides information about the beam range.

Results: Our results show that the proton beam range obtained using MLFC correlates closely with the range obtained from commissioning water tank measurements for all proton energies. Upon applying a range calibration factor, the maximum deviation is 0.4 g/cm2. The MLFC range showed no dependence on the number of monitor units and the source-to-surface distance. Range measurements collected over multiple weeks exhibited stability. The total charge collected agrees closely with the theoretical charge from the treatment planning system beam model for low- and mid-range energies.

Conclusions: We have calibrated and commissioned the use of the MLFC to easily verify range and total charge of proton beams. This tool will improve the workflow efficiency of the proton QA.

利用多层法拉第收集器验证质子束的射程和电荷。
目的:质子治疗的日常质量保证(QA)检查是确保水中每束质子能量的范围精确到 1 毫米。这对于确保肿瘤得到充分照射,同时尽量减少对周围健康组织的损伤非常重要。根据质子束模型验证收集到的总电荷也很重要。这项研究提出了一种省时高效的方法,利用多层法拉第收集器(MLFC)验证不同能量质子束的射程和总电荷:我们使用的是 MLFC-128-250MeV,由 128 层薄铜箔组成,每层铜箔之间用薄的绝缘 KaptonTM 层隔开。质子通过收集器时会在金属箔上产生电荷,电荷由多通道电度计集成和测量。金属箔上的电荷沉积提供了质子束射程的信息:我们的结果表明,使用 MLFC 获得的质子束射程与所有质子能量的试运行水箱测量获得的射程密切相关。应用量程校准因子后,最大偏差为 0.4 g/cm2。MLFC 量程与监测单元数量和源到表面的距离无关。多周收集的量程测量结果显示出稳定性。收集到的总电荷量与治疗规划系统光束模型中低端和中端能量的理论电荷量非常吻合:我们已经校准并委托使用 MLFC,以轻松验证质子束的射程和总电荷。该工具将提高质子质量保证的工作流程效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
0.00%
发文量
202
审稿时长
2 months
期刊介绍: Technology in Cancer Research & Treatment (TCRT) is a JCR-ranked, broad-spectrum, open access, peer-reviewed publication whose aim is to provide researchers and clinicians with a platform to share and discuss developments in the prevention, diagnosis, treatment, and monitoring of cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信