SWATH-proteomics reveals Mathurameha, a traditional anti-diabetic herbal formula, attenuates high glucose-induced endothelial dysfunction through the EGF/NO/IL-1β regulatory axis
{"title":"SWATH-proteomics reveals Mathurameha, a traditional anti-diabetic herbal formula, attenuates high glucose-induced endothelial dysfunction through the EGF/NO/IL-1β regulatory axis","authors":"Siripat Aluksanasuwan , Keerakarn Somsuan , Wararat Chiangjong , Artitaya Rongjumnong , Wuttichai Jaidee , Narawadee Rujanapun , Somchai Chutipongtanate , Surat Laphookhieo , Rawiwan Charoensup","doi":"10.1016/j.jprot.2024.105263","DOIUrl":null,"url":null,"abstract":"<div><p>Mathurameha is a traditional Thai herbal formula with a clinically proven effect of blood sugar reduction in patients with diabetes mellitus, but its anti-diabetic complication potential is largely unknown. This study aimed to elucidate the effects of Mathurameha and its underlying mechanisms against high glucose-induced endothelial dysfunction in human endothelial EA.hy926 cells. After confirming no cytotoxic effects, the cells were treated with normal glucose (NG), high glucose (HG), or high glucose plus Mathurameha (HG + M) for 24 h. A quantitative label-free proteomic analysis using the sequential window acquisition of all theoretical mass spectra (SWATH-MS) approach identified 24 differentially altered proteins among the three groups: 7 between HG and NG, 9 between HG + M and NG, and 13 between HG + M and HG. Bioinformatic analyses suggested a potential anti-diabetic action through the epidermal growth factor (EGF) pathway. Subsequent functional validations demonstrated that Mathurameha reduced the EGF secretion and the intracellular reactive oxygen species (ROS) level in high glucose-treated cells. Mathurameha also exhibited a stimulatory effect on nitric oxide (NO) production while significantly reducing the secretion of endothelin-1 (ET-1) and interleukin-1β (IL-1β) in high glucose-treated cells. In conclusion, our findings demonstrated that Mathurameha attenuated high glucose-induced endothelial dysfunction through the EGF/NO/IL-1β regulatory axis.</p></div><div><h3>Significance</h3><p>This study reveals the potential of Mathurameha, a traditional Thai herbal formula, in mitigating high glucose-induced endothelial dysfunction, a common complication in diabetes mellitus. Using proteomics and bioinformatic analyses followed by functional validations, the present study highlights the protective effects of Mathurameha through the EGF/NO/IL-1β regulatory axis. These findings support its potential use as a therapeutic intervention for diabetic vascular complications and provide valuable information for developing more effective anti-diabetic drugs.</p></div>","PeriodicalId":16891,"journal":{"name":"Journal of proteomics","volume":"306 ","pages":"Article 105263"},"PeriodicalIF":2.8000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of proteomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874391924001957","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Mathurameha is a traditional Thai herbal formula with a clinically proven effect of blood sugar reduction in patients with diabetes mellitus, but its anti-diabetic complication potential is largely unknown. This study aimed to elucidate the effects of Mathurameha and its underlying mechanisms against high glucose-induced endothelial dysfunction in human endothelial EA.hy926 cells. After confirming no cytotoxic effects, the cells were treated with normal glucose (NG), high glucose (HG), or high glucose plus Mathurameha (HG + M) for 24 h. A quantitative label-free proteomic analysis using the sequential window acquisition of all theoretical mass spectra (SWATH-MS) approach identified 24 differentially altered proteins among the three groups: 7 between HG and NG, 9 between HG + M and NG, and 13 between HG + M and HG. Bioinformatic analyses suggested a potential anti-diabetic action through the epidermal growth factor (EGF) pathway. Subsequent functional validations demonstrated that Mathurameha reduced the EGF secretion and the intracellular reactive oxygen species (ROS) level in high glucose-treated cells. Mathurameha also exhibited a stimulatory effect on nitric oxide (NO) production while significantly reducing the secretion of endothelin-1 (ET-1) and interleukin-1β (IL-1β) in high glucose-treated cells. In conclusion, our findings demonstrated that Mathurameha attenuated high glucose-induced endothelial dysfunction through the EGF/NO/IL-1β regulatory axis.
Significance
This study reveals the potential of Mathurameha, a traditional Thai herbal formula, in mitigating high glucose-induced endothelial dysfunction, a common complication in diabetes mellitus. Using proteomics and bioinformatic analyses followed by functional validations, the present study highlights the protective effects of Mathurameha through the EGF/NO/IL-1β regulatory axis. These findings support its potential use as a therapeutic intervention for diabetic vascular complications and provide valuable information for developing more effective anti-diabetic drugs.
期刊介绍:
Journal of Proteomics is aimed at protein scientists and analytical chemists in the field of proteomics, biomarker discovery, protein analytics, plant proteomics, microbial and animal proteomics, human studies, tissue imaging by mass spectrometry, non-conventional and non-model organism proteomics, and protein bioinformatics. The journal welcomes papers in new and upcoming areas such as metabolomics, genomics, systems biology, toxicogenomics, pharmacoproteomics.
Journal of Proteomics unifies both fundamental scientists and clinicians, and includes translational research. Suggestions for reviews, webinars and thematic issues are welcome.