BiRNN-DDI: A Drug-Drug Interaction Event Type Prediction Model Based on Bidirectional Recurrent Neural Network and Graph2Seq Representation.

IF 1.4 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS
GuiShen Wang, Hui Feng, Chen Cao
{"title":"BiRNN-DDI: A Drug-Drug Interaction Event Type Prediction Model Based on Bidirectional Recurrent Neural Network and Graph2Seq Representation.","authors":"GuiShen Wang, Hui Feng, Chen Cao","doi":"10.1089/cmb.2024.0476","DOIUrl":null,"url":null,"abstract":"<p><p>Research on drug-drug interaction (DDI) prediction, particularly in identifying DDI event types, is crucial for understanding adverse drug reactions and drug combinations. This work introduces a Bidirectional Recurrent Neural Network model for DDI event type prediction (BiRNN-DDI), which simultaneously considers structural relationships and contextual information. Our BiRNN-DDI model constructs drug feature graphs to mine structural relationships. For contextual information, it transforms drug graphs into sequences and employs a two-channel structure, integrating BiRNN, to obtain contextual representations of drug-drug pairs. The model's effectiveness is demonstrated through comparisons with state-of-the-art models on two DDI event-type benchmarks. Extensive experimental results reveal that BiRNN-DDI surpasses other models in accuracy, AUPR, AUC, F1 score, Precision, and Recall metrics on both small and large datasets. Additionally, our model exhibits a lower parameter space, indicating more efficient learning of drug feature representations and prediction of potential DDI event types.</p>","PeriodicalId":15526,"journal":{"name":"Journal of Computational Biology","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/cmb.2024.0476","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Research on drug-drug interaction (DDI) prediction, particularly in identifying DDI event types, is crucial for understanding adverse drug reactions and drug combinations. This work introduces a Bidirectional Recurrent Neural Network model for DDI event type prediction (BiRNN-DDI), which simultaneously considers structural relationships and contextual information. Our BiRNN-DDI model constructs drug feature graphs to mine structural relationships. For contextual information, it transforms drug graphs into sequences and employs a two-channel structure, integrating BiRNN, to obtain contextual representations of drug-drug pairs. The model's effectiveness is demonstrated through comparisons with state-of-the-art models on two DDI event-type benchmarks. Extensive experimental results reveal that BiRNN-DDI surpasses other models in accuracy, AUPR, AUC, F1 score, Precision, and Recall metrics on both small and large datasets. Additionally, our model exhibits a lower parameter space, indicating more efficient learning of drug feature representations and prediction of potential DDI event types.

BiRNN-DDI:基于双向循环神经网络和 Graph2Seq 表示的药物-药物相互作用事件类型预测模型。
药物相互作用(DDI)预测研究,尤其是识别 DDI 事件类型,对于了解药物不良反应和药物组合至关重要。本研究介绍了一种用于 DDI 事件类型预测的双向循环神经网络模型(BiRNN-DDI),该模型同时考虑了结构关系和上下文信息。我们的 BiRNN-DDI 模型通过构建药物特征图来挖掘结构关系。对于上下文信息,它将药物图转化为序列,并采用双通道结构,整合 BiRNN,以获得药物对的上下文表示。通过在两个 DDI 事件类型基准上与最先进的模型进行比较,证明了该模型的有效性。广泛的实验结果表明,在小型和大型数据集上,BiRNN-DDI 在准确率、AUPR、AUC、F1 分数、精确度和召回率指标上都超过了其他模型。此外,我们的模型参数空间更小,表明药物特征表征和潜在 DDI 事件类型预测的学习效率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Biology
Journal of Computational Biology 生物-计算机:跨学科应用
CiteScore
3.60
自引率
5.90%
发文量
113
审稿时长
6-12 weeks
期刊介绍: Journal of Computational Biology is the leading peer-reviewed journal in computational biology and bioinformatics, publishing in-depth statistical, mathematical, and computational analysis of methods, as well as their practical impact. Available only online, this is an essential journal for scientists and students who want to keep abreast of developments in bioinformatics. Journal of Computational Biology coverage includes: -Genomics -Mathematical modeling and simulation -Distributed and parallel biological computing -Designing biological databases -Pattern matching and pattern detection -Linking disparate databases and data -New tools for computational biology -Relational and object-oriented database technology for bioinformatics -Biological expert system design and use -Reasoning by analogy, hypothesis formation, and testing by machine -Management of biological databases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信