{"title":"CCR2-dependent placental migration of inflammatory monocytes suppresses abnormal pregnancies caused by Toxoplasma gondii infection.","authors":"Naganori Kamiyama, Mai Ueno, Yuma Sasaki, Thanyakorn Chalalai, Nozomi Sachi, Sotaro Ozaka, Yasuhiro Soga, Yomei Kagoshima, Supanuch Ekronarongchai, Masaaki Okamoto, Masahiro Yamamoto, Takashi Kobayashi","doi":"10.1093/intimm/dxae046","DOIUrl":null,"url":null,"abstract":"<p><p>Toxoplasma gondii (T. gondii) is a zoonotic protozoan parasite that causes congenital toxoplasmosis, including fetal death, abortion, stillbirth, morphological abnormalities, and premature birth. Primary T. gondii infection in pregnant women results in congenital toxoplasmosis. C-C chemokine receptor (CCR) 2 is reportedly a critical host defense factor against T. gondii infection. However, details of the role of CCR2 in the host immune response to T. gondii in congenital toxoplasmosis remain unclear. Here, we infected pregnant CCR2-deficient mice with T. gondii, resulting in stillbirth, embryonic resorption, fetal morphological abnormalities, and preterm delivery at significantly higher rates than those in pregnant wild-type (WT) mice. Consistent with the severity of abnormal pregnancy, a large area of placental hemorrhage and a large number of T. gondii infections around the hemorrhagic area were observed in the placentas of CCR2-deficient mice. In addition, the accumulation of inflammatory monocytes in the placenta was reduced in CCR2-deficient mice during infection. We further confirmed that the adoptive transfer of inflammatory monocytes collected from WT mice into T. gondii-infected pregnant CCR2-deficient mice effectively suppressed placental damage and abnormal pregnancy. Collectively, CCR2 contributes to pregnancy maintenance by regulating the migration of inflammatory monocytes into the placenta of T. gondii-infected pregnant mice.</p>","PeriodicalId":13743,"journal":{"name":"International immunology","volume":" ","pages":"39-52"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11587896/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/intimm/dxae046","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Toxoplasma gondii (T. gondii) is a zoonotic protozoan parasite that causes congenital toxoplasmosis, including fetal death, abortion, stillbirth, morphological abnormalities, and premature birth. Primary T. gondii infection in pregnant women results in congenital toxoplasmosis. C-C chemokine receptor (CCR) 2 is reportedly a critical host defense factor against T. gondii infection. However, details of the role of CCR2 in the host immune response to T. gondii in congenital toxoplasmosis remain unclear. Here, we infected pregnant CCR2-deficient mice with T. gondii, resulting in stillbirth, embryonic resorption, fetal morphological abnormalities, and preterm delivery at significantly higher rates than those in pregnant wild-type (WT) mice. Consistent with the severity of abnormal pregnancy, a large area of placental hemorrhage and a large number of T. gondii infections around the hemorrhagic area were observed in the placentas of CCR2-deficient mice. In addition, the accumulation of inflammatory monocytes in the placenta was reduced in CCR2-deficient mice during infection. We further confirmed that the adoptive transfer of inflammatory monocytes collected from WT mice into T. gondii-infected pregnant CCR2-deficient mice effectively suppressed placental damage and abnormal pregnancy. Collectively, CCR2 contributes to pregnancy maintenance by regulating the migration of inflammatory monocytes into the placenta of T. gondii-infected pregnant mice.
期刊介绍:
International Immunology is an online only (from Jan 2018) journal that publishes basic research and clinical studies from all areas of immunology and includes research conducted in laboratories throughout the world.